126 research outputs found
Defining Landscape Resistance Values in Least-Cost Connectivity Models for the Invasive Grey Squirrel: A Comparison of Approaches Using Expert-Opinion and Habitat Suitability Modelling
Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a leastcost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a leastcost approach to mapping ecological networks.This project was funded by the Forestry Commission GB and the National School of Forestry at the University of Cumbria. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Using GPS telemetry to validate least-cost modeling of gray squirrel ( Sciurus carolinensis) movement within a fragmented landscape
In Britain, the population of native red squirrels Sciurus vulgaris has suffered population declines and local extinctions. Interspecific resource competition and disease spread by the invasive gray squirrel Sciurus carolinensis are the main factors behind the decline. Gray squirrels have adapted to the British landscape so efficiently that they are widely distributed. Knowledge on how gray squirrels are using the landscape matrix and being able to predict their movements will aid management. This study is the first to use global positioning system (GPS) collars on wild gray squirrels to accurately record movements and land cover use within the landscape matrix. This data were used to validate Geographical Information System (GIS) least-cost model predictions of movements and provided much needed information on gray squirrel movement pathways and network use. Buffered least-cost paths and least-cost corridors provide predictions of the most probable movements through the landscape and are seen to perform better than the more expansive least-cost networks which include all possible movements. Applying the knowledge and methodologies gained to current gray squirrel expansion areas, such as Scotland and in Italy, will aid in the prediction of potential movement areas and therefore management of the invasive gray squirrel. The methodologies presented in this study could potentially be used in any landscape and on numerous species
The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition
Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle
gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
A qualitative study of cardiac rehabilitation patients’ perspectives on taking medicines: implications for the ‘medicines-resistance’ model of medicine-taking
Background
The appropriate use of medicines continues to be an important area of inter-disciplinary research activity both in the UK and beyond. Key qualitative work in this area in the last decade has included the ‘medicines resistance’ model of medicine-taking, which was based on a meta-ethnography of 37 qualitative studies. This model proposed that patients approach medicine-taking as ‘passive accepters’, ‘active accepters’, ‘active modifiers’ or ‘complete rejecters’, of which the latter two categories were considered to show ‘resistance’ to medicines. However, critical assessment of the model appears to be currently lacking, particularly in terms of its use in clinical practice. This paper seeks to contribute to the literature in this area by critically examining the practical application of the model in light of the findings from a qualitative, follow-up study of cardiac rehabilitation patients’ perspectives and experiences of using medicines.
Methods
Following ethical approval, in-depth, audiotaped, qualitative interviews were conducted with fifteen patients who had completed a UK hospital-based cardiac rehabilitation programme. Participants were aged 42–65, white British and from a variety of socioeconomic backgrounds. Interview topics included perspectives on coronary heart disease, medicine-taking and lifestyle changes. Follow-up interviews with ten patients approximately nine months later explored whether their perspectives had changed.
Results
The findings suggest that the active/passive and accepter/modifier distinctions may not allow for clear determination of which profile a patient fits into at any given point, and that definitions such as ‘accepter’ and ‘resistance’ may be insufficiently discerning to categorise patients’ use of medicines in practice. These problems appear to arise when the issue of patients’ accounts about medicines adherence are considered, since patients may have concerns or disquiet about medicines whether or not they are adherent and the model does not consider disquiet in isolation from adherence.
Conclusions
Practical application of the ‘medicines resistance’ model of medicine-taking may be problematic in this patient group. Dissociation of disquiet about medicines from medicines adherence may allow for a focus on helping patients to resolve their disquiet, if possible, without this necessarily having to be viewed in terms of its potential effect on adherence
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
Prevalence of Taenia solium cysticercosis in pigs entering the food chain in western Kenya
Three hundred forty-three pigs slaughtered and marketed in western Kenya were subjected to lingual examination and HP10 Ag-ELISA for the serological detection of Taenia solium antigen. When estimates were adjusted for the sensitivity and specificity of the diagnostic assays, prevalence of T. solium cysticercosis estimated by lingual exam and HP10 Ag-ELISA was between 34.4 % (95 % confidence interval (CI) 19.4–49.4 %) and 37.6 % (95 % CI 29.3–45.9 %), respectively. All pigs, however, were reported to have passed routine meat inspection. Since T. solium poses a serious threat to public health, these results, if confirmed, indicate that the introduction of control strategies may be appropriate to ensure the safety of pork production in this region
- …