150 research outputs found

    Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    Get PDF
    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations

    Thoughts on the chimera method of simulation of three-dimensional viscous flow

    Get PDF
    The chimera overset grid is reviewed and discussed relative to other procedures for simulating flow about complex configurations. It is argued that while more refinement of the technique is needed, current schemes are competitive to unstructured grid schemes and should ultimately prove more useful

    Numerical investigation of a jet in ground effect using the fortified Navier-Stokes scheme

    Get PDF
    One of the flows inherent in VSTOL operations, the jet in ground effect with a crossflow, is studied using the Fortified Navier-Stokes (FNS) scheme. Through comparison of the simulation results and the experimental data, and through the variation of the flow parameters (in the simulation) a number of interesting characteristics of the flow have been observed. For example, it appears that the forward penetration of the ground vortex is a strong inverse function of the level of mixing in the ground vortex. Also, an effort has been made to isolate issues which require additional work in order to improve the numerical simulation of the jet in ground effect flow. The FNS approach simplifies the simulation of a single jet in ground effect, but it will be even more effective in applications to more complex topologies

    Numerical simulation of the hypersonic flow around lifting vehicles

    Get PDF
    A method for solving the viscous hypersonic flow field around realistic configurations is presented. The numerical procedure for generating the required finite difference grid and the two-factored implicit flow solver are described. Results are presented for the shuttle orbiter and a generic wing-body configuration at hypersonic Mach numbers

    Application of cyclic relaxation procedures to transonic flow fields

    Get PDF

    A formulation for the boundary-layer equations in general coordinates

    Get PDF
    This is a working paper in which a formulation is given for solving the boundary-layer equations in general body-fitted curvilinear coordinates while retaining the original Cartesian dependent variables. The solution procedure does not require that any of the coordinates be orthogonal, and much of the software developed for many Navier-Stokes schemes can be readily used. A limited number of calculations has been undertaken to validate the approach

    MaxCyte scalable electroporation: A universal cell engineering platform for development of cell-based medicines from R&D to clinic

    Get PDF
    Each cell-based therapeutic modality – from viral vectors to immune cell engineering and in situ gene editing – relies on different biologic approaches, however, they all require some type of cell engineering therapeutic manufacturing. MaxCyte developed a non-viral, electroporation-based cell engineering technology that has the performance, flexibility, safety and scalability for use in cell therapy development through to manufacturing for patient treatment. In this poster, we present capabilities of MaxCyte scalable electroporation, a platform of cGMP-compliant, CE-marked instruments with an FDA Master File. Data for high performance electroporation of a variety of cell types commonly used in cellular therapeutics, including adherent and suspension cells as well as cell lines and primary cells, are summarized. Use of MaxCyte electroporation for a breadth of real world applications are highlighted including lentivirus and AAV production, engineering of primary T-cells for the expression of an anti-mesothelin CAR molecule, and CRISPR-mediate gene editing of stem cells. These data will directly illustrate the scalability and consistency of MaxCyte electroporation that enables the use of this single cell engineering technology from early R&D to patient dosing of cell-based biotherapeutics

    Sherrill House

    Get PDF
    Prepared by the Fall 2012 Conservation of Historic Building Materials class. This Historic Structure Report contains a historical overview of the Sherrill House, an interior and exterior architectural description, a conditions assessment of the interior and exterior of the structure, recommendations for treatment and future use, and a maintenance plan. The purpose of this report is to provide a current assessment of the condition of the property, recommendations for needed repairs and options for future use of the structure.https://scholarworks.gsu.edu/history_heritagepreservation/1039/thumbnail.jp

    Locust Grove, GA

    Get PDF
    Prepared by the Spring 2013 Preservation Planning Class. The Locust Grove Design Guidelines were developed to help guide the community of Locust Grove in preservation efforts. These Design Guidelines are created to assist the public and the Locust Grove Historic Preservation Commission in the appropriate rehabilitation of historic properties in the district based on the Secretary of the Interior’s Standards for the Treatment of Historic Properties.https://scholarworks.gsu.edu/history_heritagepreservation/1024/thumbnail.jp

    Numerical aerodynamic simulation of the space shuttle ascent environment

    Get PDF
    After the STS 51-L accident, an extensive review of the Space Shuttle Orbiter's ascent aerodynamic loads uncovered several questionable areas that required further analysis. The insight gained by comparing the Shuttle ascent CFD numerical simulations, obtained by the NASA Ames Space Shuttle Flow Simulation Group, to the current IVBC-3 aerodynamic loads database was instrumental in resolving uncertainties on the Orbiter payload bay doors and fuselage. Initial confidence in the numerical simulations was gained by comparing them with the limited flight data that had been obtained during the Orbiter Flight Test (OFT) program. Current CFD results exist for Mach numbers 0.6, 0.9, 1.05, 1.55, 2.0, and 2.5. Since the pre STS-1 wind tunnel test program (IA-105) often yields considerable differences when compared to STS-5 flight data, the M(sub infinity) = 1.05 transonic case is the most investigated. The IA308 mated-vehicle hot gas plume wind tunnel test, recently completed at AEDC 16T (transonic) and Lewis (hypersonic), is also used to compare with the computation where applicable
    • …
    corecore