19,828 research outputs found
Recognition Memory Dysfunction Relates to Hippocampal Subfield Volume: A Study of Cognitively Normal and Mildly Impaired Older Adults.
ObjectivesThe current study examined recognition memory dysfunction and its neuroanatomical substrates in cognitively normal older adults and those diagnosed with mild cognitive impairment (MCI).MethodsParticipants completed the Mnemonic Similarity Task, which provides simultaneous measures of recognition memory and mnemonic discrimination. They also underwent structural neuroimaging to assess volume of medial temporal cortex and hippocampal subfields.ResultsAs expected, individuals diagnosed with MCI had significantly worse recognition memory performance and reduced volume across medial temporal cortex and hippocampal subfields relative to cognitively normal older adults. After controlling for diagnostic group differences, however, recognition memory was significantly related to whole hippocampus volume, and to volume of the dentate gyrus/CA3 subfield in particular. Recognition memory was also related to mnemonic discrimination, a fundamental component of episodic memory that has previously been linked to dentate gyrus/CA3 structure and function.DiscussionResults reveal that hippocampal subfield volume is sensitive to individual differences in recognition memory in older adults independent of clinical diagnosis. This supports the notion that episodic memory declines along a continuum within this age group, not just between diagnostic groups
New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity
Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities
Recommended from our members
Neural substrates of mnemonic discrimination: A whole-brain fMRI investigation.
IntroductionA fundamental component of episodic memory is the ability to differentiate new and highly similar events from previously encountered events. Numerous functional magnetic resonance imaging (fMRI) studies have identified hippocampal involvement in this type of mnemonic discrimination (MD), but few studies have assessed MD-related activity in regions beyond the hippocampus. Therefore, the current fMRI study examined whole-brain activity in healthy young adults during successful discrimination of the test phase of the Mnemonic Similarity Task.MethodIn the study phase, participants made "indoor"/"outdoor" judgments to a series of objects. In the test phase, they made "old"/"new" judgments to a series of probe objects that were either repetitions from the memory set (targets), similar to objects in the memory set (lures), or novel. We assessed hippocampal and whole-brain activity consistent with MD using a step function to identify where activity to targets differed from activity to lures with varying degrees of similarity to targets (high, low), responding to them as if they were novel.ResultsResults revealed that the hippocampus and occipital cortex exhibited differential activity to repeated stimuli relative to even highly similar stimuli, but only hippocampal activity predicted discrimination performance.ConclusionsThese findings are consistent with the notion that successful MD is supported by the hippocampus, with auxiliary processes supported by cortex (e.g., perceptual discrimination)
Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)
Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals
Gated rotation mechanism of site-specific recombination by ϕC31 integrase
Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round
Cryogenic zero-gravity prototype vent system
Design, fabrication, and tests of prototype cryogenic zero-gravity heat exchanger vent syste
Differences between the Two Anomalous X-Ray Pulsars: Variations in the Spin Down Rate of 1E 1048.1-5937 and An Extended Interval of Quiet Spin Down in 1E 2259+586
We analysed the RXTE archival data of 1E 1048.1-5937 covering a time span of
more than one year. The spin down rate of this source decreases by 30 percent
during the observation. We could not resolve the X-ray flux variations because
of contamination by Eta Carinae. We find that the level of pulse frequency
fluctuations of 1E 1048.1-5937 is consistent with typical noise levels of
accretion powered pulsars. Recent RXTE observations of 1E 2259+586 have shown a
constant spin down with a very low upper limit on timing noise. We used the
RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic
X-ray luminosity times series is also stable, with an rms fractional variation
of less than 15 percent. The source could have been in a quiet phase of
accretion with a constant X-ray luminosity and spin down rate.Comment: MNRAS in pres
Towards electron transport measurements in chemically modified graphene: The effect of a solvent
Chemical functionalization of graphene modifies the local electron density of
the carbon atoms and hence electron transport. Measuring these changes allows
for a closer understanding of the chemical interaction and the influence of
functionalization on the graphene lattice. However, not only chemistry, in this
case diazonium chemistry, has an effect on the electron transport. Latter is
also influenced by defects and dopants resulting from different processing
steps. Here, we show that solvents used in the chemical reaction process change
the transport properties. In more detail, the investigated combination of
isopropanol and heating treatment reduces the doping concentration and
significantly increases the mobility of graphene. Furthermore, the isopropanol
treatment alone increases the concentration of dopants and introduces an
asymmetry between electron and hole transport which might be difficult to
distinguish from the effect of functionalization. The results shown in this
work demand a closer look on the influence of solvents used for chemical
modification in order to understand their influence
Beltrami state in black-hole accretion disk: A magnetofluid approach
Using the magnetofluid unification framework, we show that the accretion disk
plasma (embedded in the background geometry of a blackhole) can relax to a
class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the
disk plasma as a Hall MHD system, we find that the space-time curvature can
significantly alter the magnetic/velocity decay rate as we move away from the
compact object; the velocity profiles in BB states, for example, deviate
substantially from the predicted corresponding geodesic velocity profiles.
These departures imply a rich interplay of plasma dynamics and general
relativity revealed by examining the corresponding Bernoulli condition
representing "homogeneity" of total energy. The relaxed states have their
origin in the constraints provided by the two helicity invariants of Hall MHD.
These helicities conspire to introduce a new oscillatory length scale into the
system that is strongly influenced by relativistic and thermal effects.Comment: 8 figure
On measuring alpha in B(t)-> rho^\pm pi^\mp
Defining a most economical parametrization of time-dependent B-> rho^\pm
pi^\mp decays, including a measurable phase alpha_{eff} which equals the weak
phase alpha in the limit of vanishing penguin amplitudes, we propose two ways
for determining alpha in this processes. We explain the limitation of one
method, assuming only that two relevant tree amplitudes factorize and that
their relative strong phase, delta_t, is negligible. The other method, based on
broken flavor SU(3), permits a determination of alpha in B^0-> rho^\pm pi^\mp
in an overconstrained system using also rate measurements of B^{0,+}-> K^* pi
and B^{0,+}->rho K. Current data are shown to restrict two ratios of penguin
and tree amplitudes, r_\pm, to a narrow range around 0.2, and to imply an upper
bound |alpha_{eff} - alpha| < 15 degrees. Assuming that delta_t is much smaller
than 90 degrees, we find alpha =(93\pm 16) degrees and (102 \pm 20) degrees
using BABAR and BELLE results for B(t)-> rho^\pm pi^mp. Avoiding this
assumption for completeness, we demonstrate the reduction of discrete
ambiguities in alpha with increased statistics, and show that SU(3) breaking
effects are effectively second order in r_\pm.Comment: 23 pages, 2 figures, data and references updated, to be published in
Phys. Rev.
- …