19,828 research outputs found

    Recognition Memory Dysfunction Relates to Hippocampal Subfield Volume: A Study of Cognitively Normal and Mildly Impaired Older Adults.

    Get PDF
    ObjectivesThe current study examined recognition memory dysfunction and its neuroanatomical substrates in cognitively normal older adults and those diagnosed with mild cognitive impairment (MCI).MethodsParticipants completed the Mnemonic Similarity Task, which provides simultaneous measures of recognition memory and mnemonic discrimination. They also underwent structural neuroimaging to assess volume of medial temporal cortex and hippocampal subfields.ResultsAs expected, individuals diagnosed with MCI had significantly worse recognition memory performance and reduced volume across medial temporal cortex and hippocampal subfields relative to cognitively normal older adults. After controlling for diagnostic group differences, however, recognition memory was significantly related to whole hippocampus volume, and to volume of the dentate gyrus/CA3 subfield in particular. Recognition memory was also related to mnemonic discrimination, a fundamental component of episodic memory that has previously been linked to dentate gyrus/CA3 structure and function.DiscussionResults reveal that hippocampal subfield volume is sensitive to individual differences in recognition memory in older adults independent of clinical diagnosis. This supports the notion that episodic memory declines along a continuum within this age group, not just between diagnostic groups

    New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    Get PDF
    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities

    Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)

    Get PDF
    Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals

    Gated rotation mechanism of site-specific recombination by ϕC31 integrase

    Get PDF
    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round

    Cryogenic zero-gravity prototype vent system

    Get PDF
    Design, fabrication, and tests of prototype cryogenic zero-gravity heat exchanger vent syste

    Differences between the Two Anomalous X-Ray Pulsars: Variations in the Spin Down Rate of 1E 1048.1-5937 and An Extended Interval of Quiet Spin Down in 1E 2259+586

    Get PDF
    We analysed the RXTE archival data of 1E 1048.1-5937 covering a time span of more than one year. The spin down rate of this source decreases by 30 percent during the observation. We could not resolve the X-ray flux variations because of contamination by Eta Carinae. We find that the level of pulse frequency fluctuations of 1E 1048.1-5937 is consistent with typical noise levels of accretion powered pulsars. Recent RXTE observations of 1E 2259+586 have shown a constant spin down with a very low upper limit on timing noise. We used the RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic X-ray luminosity times series is also stable, with an rms fractional variation of less than 15 percent. The source could have been in a quiet phase of accretion with a constant X-ray luminosity and spin down rate.Comment: MNRAS in pres

    Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    Full text link
    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence

    Beltrami state in black-hole accretion disk: A magnetofluid approach

    Full text link
    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.Comment: 8 figure

    On measuring alpha in B(t)-> rho^\pm pi^\mp

    Full text link
    Defining a most economical parametrization of time-dependent B-> rho^\pm pi^\mp decays, including a measurable phase alpha_{eff} which equals the weak phase alpha in the limit of vanishing penguin amplitudes, we propose two ways for determining alpha in this processes. We explain the limitation of one method, assuming only that two relevant tree amplitudes factorize and that their relative strong phase, delta_t, is negligible. The other method, based on broken flavor SU(3), permits a determination of alpha in B^0-> rho^\pm pi^\mp in an overconstrained system using also rate measurements of B^{0,+}-> K^* pi and B^{0,+}->rho K. Current data are shown to restrict two ratios of penguin and tree amplitudes, r_\pm, to a narrow range around 0.2, and to imply an upper bound |alpha_{eff} - alpha| < 15 degrees. Assuming that delta_t is much smaller than 90 degrees, we find alpha =(93\pm 16) degrees and (102 \pm 20) degrees using BABAR and BELLE results for B(t)-> rho^\pm pi^mp. Avoiding this assumption for completeness, we demonstrate the reduction of discrete ambiguities in alpha with increased statistics, and show that SU(3) breaking effects are effectively second order in r_\pm.Comment: 23 pages, 2 figures, data and references updated, to be published in Phys. Rev.
    corecore