97 research outputs found

    Thermogelling Aqueous Fluids Containing Low Concentrations of Pluronic F127 and Laponite Nanoparticles

    No full text
    The triblock copolymer Pluronic F127 (PF127) is frequently used in colloidal and pharmaceutical formulations. Concentrated aqueous solutions of PF127 (>15 wt %) are known to undergo thermogelling (i.e., a sol-to-gel transition upon heating), which is attributed to the formation of a volume-filling cubic array of micelles. Here, we report that thermogelling can occur at much lower PF127 concentrations (1.2 to 8 wt %) if nanoparticles of laponite (25-nm-diameter disks) are also present in the formulation. Thermogelling in laponite/PF127 mixtures requires each component to be present above a minimum level. The gels have moduli around 100 Pa, and they can be reversibly liquefied to sols upon cooling. Rheological techniques, small-angle neutron scattering (SANS), and transmission electron microscopy (TEM) are used to characterize the thermogels. We attribute the onset of thermogelling to depletion flocculation of the laponite particles into a network by spherical micelles of PF127

    Superfast-Expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work

    No full text
    Superabsorbent polymer gels can absorb large amounts of water (100–1000× their dry weight). For the past 50 years, many scientists such as de Gennes have proposed to extract mechanical work from gel expansion/contraction, which could pave the way for “artificial muscles”. However, slow rates of gel expansion have limited these efforts: macroscale (∼cm) gels take over 24 h to expand to their equilibrium size. Gels can be made to expand faster if their characteristic length scale is reduced, e.g., by making a macroscopic gel porous. Still, gels that are both superabsorbent and able to expand rapidly have not yet been realized. Here, we create gels at the macroscale (∼cm or larger) that are porous, highly robust, superabsorbent and expand much faster than any gels thus far. Our approach involves the in situ foaming of a monomer solution (acrylic acid and acrylamide) using a double-barreled syringe that has acid and base in its two barrels. Gas (CO2) is generated at the mixing tip of the syringe by the acid–base reaction, and gas bubbles are stabilized by an amphiphilic polymer in one of the barrels. The monomers are then polymerized by ultraviolet (UV) light to form the gel around the bubbles, and the material is dried under ambient conditions to give a porous solid. When this dry gel is added to water, it absorbs water at a rate of 20 g/g·s until an equilibrium is achieved at ∼300× its weight. In the process, each gel dimension increases by ∼20%/s until its final dimensions are more than 3× larger. Such rapid and appreciable expansion can be easily observed by the eye, and remarkably, the swollen gel is robust enough to be picked up by hand. SEM images reveal a porosity of >90% and an interconnected network of pores. The gels are responsive to pH, and a full cycle of expansion (in regular water) and contraction (at pH 10 or in ethanol) can be completed within about 60 s. We use gel expansion to rapidly lift weights against gravity, resulting in ∼0.4 mJ of work being done over 40 s, which translates to a power density of 260 mW/kg. This ability to harness the chemical potential energy from the gel to do useful mechanical work could enable new designs for mechano-chemical enginesand potentially for artificial muscles

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    Superfast-Expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work

    No full text
    Superabsorbent polymer gels can absorb large amounts of water (100–1000× their dry weight). For the past 50 years, many scientists such as de Gennes have proposed to extract mechanical work from gel expansion/contraction, which could pave the way for “artificial muscles”. However, slow rates of gel expansion have limited these efforts: macroscale (∼cm) gels take over 24 h to expand to their equilibrium size. Gels can be made to expand faster if their characteristic length scale is reduced, e.g., by making a macroscopic gel porous. Still, gels that are both superabsorbent and able to expand rapidly have not yet been realized. Here, we create gels at the macroscale (∼cm or larger) that are porous, highly robust, superabsorbent and expand much faster than any gels thus far. Our approach involves the in situ foaming of a monomer solution (acrylic acid and acrylamide) using a double-barreled syringe that has acid and base in its two barrels. Gas (CO2) is generated at the mixing tip of the syringe by the acid–base reaction, and gas bubbles are stabilized by an amphiphilic polymer in one of the barrels. The monomers are then polymerized by ultraviolet (UV) light to form the gel around the bubbles, and the material is dried under ambient conditions to give a porous solid. When this dry gel is added to water, it absorbs water at a rate of 20 g/g·s until an equilibrium is achieved at ∼300× its weight. In the process, each gel dimension increases by ∼20%/s until its final dimensions are more than 3× larger. Such rapid and appreciable expansion can be easily observed by the eye, and remarkably, the swollen gel is robust enough to be picked up by hand. SEM images reveal a porosity of >90% and an interconnected network of pores. The gels are responsive to pH, and a full cycle of expansion (in regular water) and contraction (at pH 10 or in ethanol) can be completed within about 60 s. We use gel expansion to rapidly lift weights against gravity, resulting in ∼0.4 mJ of work being done over 40 s, which translates to a power density of 260 mW/kg. This ability to harness the chemical potential energy from the gel to do useful mechanical work could enable new designs for mechano-chemical enginesand potentially for artificial muscles

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core

    No full text
    We present a design for polymer capsules that exhibit a range of unusual autonomous behaviors when exposed to a chemical fuel. The capsules have a physically gelled core (alginate-Ca2+) loaded with catalytic (silver) particles and a shell composed of a chemically cross-linked gel. In the presence of the fuel (H2O2), a catalytic reaction occurs, which generates oxygen (O2) gas. The gas collects in a zone between the core and the shell, and the resulting gas pressure causes the elastic shell to stretch. This makes the capsule inflate in a process reminiscent of a swelling pufferfish. As the capsule inflates, the polymer chains in the shell continue to stretch until a breaking point is reached, whereupon the shell ruptures. Three rupture modes are documented: gentle, moderate, and violent. The latter involves the gelled core being forcefully ejected out of the shell in a manner similar to the ejection of needles out of nematocysts on jellyfish. The extent and duration of inflation can be tuned by altering the core and shell composition; for example, shells that are more densely cross-linked swell less and rupture faster. Also, instead of a catalytic reaction, capsule inflation can be achieved by combining reactants, one in the capsule and the other in the external solution, that together generate a different gas (e.g., CO2)

    “Killer” Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity

    No full text
    We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body’s immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The “killer” capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu<sup>2+</sup>) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu<sup>2+</sup> cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu<sup>2+</sup> cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu<sup>2+</sup> are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules
    corecore