109 research outputs found

    Contrasting effects of habitat discontinuity on three closely related fungivorous beetle species with diverging host-use patterns and dispersal ability

    Get PDF
    Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest‐dwelling species. However, the actual impacts on populations are highly species‐specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species‐specific resistance to habitat discontinuity among closely related species inhabiting the same landscape

    Milk Replacers and Bovine Spongiform Encephalopathy in Calves, Japan

    Get PDF
    Milk Replacers and Bovine Spongiform Encephalopathy in Calves, Japa

    The association between farm-level antimicrobial usage and resistance of Staphylococcus spp., as the major genus isolated from aerosol samples, in Japanese piggeries

    Get PDF
    Bacteria are the dominant particulate matter in livestock houses and can threaten animal and public health. Antimicrobial resistance (AMR) is a crucial concern worldwide, and nationwide measures established based on the One Health approach are being implemented in many countries. This requires multidisciplinary perspectives and collaboration among the human, animal, and environmental sectors. However, information on the AMR risk in livestock house aerosol is limited, especially its association with antimicrobial usage (AMU). Therefore, this study was conducted to reveal the AMR profile of Staphylococcus, the major bacterial genus in the aerosol of the piggeries of Japanese farms, and the association between farm-level AMU and AMR. The investigation at 10 farrow-to-finish pig farms revealed that regardless of the sampling season and the piggery group, the resistance rate of isolated staphylococci for oxacillin, erythromycin, and lincomycin was more than 40% of the median and tended to be higher than that for other antimicrobials. The AMU adjusted by the defined daily dose (DDD-adjusted AMU) in the fattening piggery group was significantly higher than that in the sow piggery group (p < 0.05). Finally, for the fattening piggery group, the generalized linear mixed model revealed that the AMR rate for oxacillin, erythromycin, tetracycline, and chloramphenicol was positively associated with the corresponding class-based DDD-adjusted AMU of penicillins (odds ratio (OR) = 2.63, p = 0.03), macrolides (OR = 6.89, p = 0.0001), tetracyclines (OR = 2.48, p = 0.04), and amphenicols (OR = 3.22, p = 0.03), respectively. These significant positive associations observed in this study imply that the resistance rate for these antimicrobials may decrease by reducing the corresponding antimicrobials’ use. In addition, the resistance rates for erythromycin and chloramphenicol also displayed a positive association with the AMU of antimicrobial classes other than macrolides and amphenicols, respectively. The mechanism underlying these phenomena is unclear; therefore, further evaluation will be needed. As limited studies have reported staphylococci in piggery aerosol and its AMR with quantitative AMU, these results based on on-farm investigations are expected to aid in establishing countermeasures for AMR of aerosol bacteria in pig farms

    Intake of Radionuclides in the Trees of Fukushima Forests 3. Removal of Radiocesium from Stem Wood, Cryptomeria Japonica (L.f.) D. Don.

    Get PDF
    Nuclear power plant accidents have dispersed radiocesium into the atmosphere to contaminate trees with no turnover in heartwood, as occurred in Fukushima, and as has persisted for over 30 years around Chernobyl. Here we employ the ponding method, in which radiocesium can be flushed out from the cross-cut edges of Japanese cedar, Cryptomeria japonica (L.f.) D. Don., stem with water due to xyloglucan degradation in tracheids. Furthermore, lab-scale ponding experiments have shown that a non-detectable level of radiocesium has been observed not only in the pool water used for 575 days but also in the water containing recombinant xyloglucanase. This traditional technology is now a new biotechnology

    Insights on the Sun birth environment in the context of star-cluster formation in hub-filament systems

    Full text link
    Cylindrical molecular filaments are observed to be the main sites of Sun-like star formation, while massive stars form in dense hubs, at the junction of multiple filaments. The role of hub-filament configurations has not been discussed yet in relation to the birth environment of the solar system and to infer the origin of isotopic ratios of Short-Lived Radionuclides (SLR, such as 26^{26}Al) of Calcium-Aluminum-rich Inclusions (CAIs) observed in meteorites. In this work, we present simple analytical estimates of the impact of stellar feedback on the young solar system forming along a filament of a hub-filament system. We find that the host filament can shield the young solar system from the stellar feedback, both during the formation and evolution of stars (stellar outflow, wind, and radiation) and at the end of their life (supernovae). We show that the young solar system formed along a dense filament can be enriched with supernova ejecta (e.g., 26^{26}Al) during the formation timescale of CAIs. We also propose that the streamers recently observed around protostars may be channeling the SLR-rich material onto the young solar system. We conclude that considering hub-filament configurations as the birth environment of the Sun is important when deriving theoretical models explaining the observed properties of the solar system.Comment: Accepted for publication in The Astrophysical Journal Letter

    Epidemiology of vampire bat-transmitted rabies virus in Goiás, central Brazil: re-evaluation based on G-L intergenic region

    Get PDF
    Abstract Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations

    GRB 090313 and the Origin of Optical Peaks in Gamma-Ray Burst Light Curves: Implications for Lorentz Factors and Radio Flares

    Get PDF
    We use a sample of 19 gamma-ray bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our sample includes GRBs and X-ray flashes for which we derive a wide range of initial Lorentz factors (40 < Γ < 450). Using plausible model parameters, the typical frequency of the forward shock is expected to lie close to the optical band; within this low typical frequency framework, we use the optical data to constrain epsilon e and show that values derived from the early time light-curve properties are consistent with published typical values derived from other afterglow studies. We produce expected radio light curves by predicting the temporal evolution of the expected radio emission from forward and reverse shock components, including synchrotron self-absorption effects at early time. Although a number of GRBs in this sample do not have published radio measurements, we demonstrate the effectiveness of this method in the case of Swift GRB 090313, for which millimetric and centimetric observations were available, and conclude that future detections of reverse-shock radio flares with new radio facilities such as the EVLA and ALMA will test the low-frequency model and provide constraints on magnetic models
    corecore