630 research outputs found
Recommended from our members
Model performance of downscaling 1999-2004 hydrometeorological fields to the upper Rio Grande basin using different forcing datasets
This study downscaled more than five years of data (1999-2004) for hydrometeorological fields over the upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5, version 3)] and two forcing datasets that include National Centers for Environmental Prediction (NCEP)-NCAR reanalysis-1 (R1) and North America Regional Reanalysis (NARR) data. The long-term high-resolution simulation results show detailed patterns of hydroclimatological fields that are highly related to the characteristics of the regional terrain; the most important of these patterns are precipitation localization features caused by the complex topography. In comparison with station observational data, the downscaling processing, on whichever forcing field is used, generated more accurate surface temperature and humidity fields than the Eta Model and NARR data, although it still included marked errors, such as a negative (positive) bias toward the daily maximum (minimum) temperature and overestimated precipitation, especially in the cold season. Comparing the downscaling results forced by the NARR and R1 with both the gridded and station observational data shows that under the NARR forcing, the MM5 model produced generally better results for precipitation, temperature, and humidity than it did under the R1 forcing. These improvements were more apparent in winter and spring. During the warm season, although the use of NARR improved the precipitation estimates statistically at the regional (basin) scale, it substantially underestimated them over the southern upper Rio Grande basin, partly because the NARR forcing data exhibited warm and dry biases in the monsoon-active region during the simulation period and improper domain selection. Analyses also indicate that over mountainous regions, both the Climate Prediction Center's (CPC's) gridded (0.25°) and NARR forcings underestimate precipitation in comparison with station gauge data. © 2008 American Meteorological Society
Recommended from our members
Factors affecting seasonal forecast use in Arizona water management: A case study of the 1997-98 El Niño
The 1997-98 El Niño was exceptional, not only because of its magnitude, but also because of the visibility and use of its forecasts. The 3 to 9 mo advance warning of a wet winter with potential flooding in the US Southwest, easily accessible by water management agencies, was unprecedented. Insights about use of this information in operational water management decision processes were developed through a series of semi-structured in-depth interviews with key personnel from a broad array of agencies responsible for emergency management and water supply, with jurisdictions ranging from urban to rural and local to regional. Interviews investigated where information was acquired, how it was interpreted and how it was incorporated into specific decisions and actions. In addition, technical and institutional barriers to forecast use are explored. Study findings emphasize (1) the need for special handling of tailored forecast products on a regional scale, (2) the need for systematic regional forecast evaluation and (3) the potential for climate information to directly affect water management decisions through integrating climate forecasts into water supply outlooks where appropriate
Recommended from our members
Modeling and analysis of the variability of the water cycle in the upper Rio Grande basin at high resolution
Estimating the water budgets in a small-scale basin is a challenge, especially in the mountainous western United States, where the terrain is complex and observational data in the mountain areas are sparse. This manuscript reports on research that downscaled 5-yr (1999-2004) hydrometeorological fields over the upper Rio Grande basin from a 2.5° NCEP-NCAR reanalysis to a 4-km local scale using a regional climate model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), version 3]. The model can reproduce the terrain-related precipitation distribution - the trend of diurnal, seasonal, and interannual precipitation variability - although poor snow simulation caused it to overestimate precipitation and evapotranspiration in the cold season. The outcomes from the coupled model are also comparable to offline Variable Infiltration Capacity (VIC) and Land Data Assimilation System (LDAS)/Mosaic land surface simulations that are driven by observed and/or analyzed surface meteorological data. © 2007 American Meteorological Society
Recommended from our members
Toward improved hydrologic prediction with reduced uncertainty using sequential multi-model combination
The contemporary usage of hydrologic models has been to rely on a single model to perform the simulation and predictions. Despite the tremendous progress, efforts and investment put into developing more hydrologic models, there is no convincing claim that any particular model in existence is superior to other models for various applications and under all circumstances. This results to reducing the size of the plausible model space and often leads to predictions that may well-represent some phenomena or events at the expenses of others. Assessment of predictive uncertainty based on a single model is subject to statistical bias and most likely underestimation of uncertainty. This endorses the implementation of multi-model methods for more accurate estimation of uncertainty in hydrologic prediction. In this study, we present two methods for the combination of multiple model predictors using Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both methods are statistical schemes to infer a combined probabilistic prediction that possess more reliability and skill than the original model members produced by several competing models. This paper discusses the features of both methods and explains how the limitation of BMA can be overcome by SBMC. Three hydrologic models are considered and it is shown that multi-model combination can result in higher prediction accuracy than individual models. © 2008 ASCE
Influence of irrigation on land hydrological processes over California
In this study, a regional climate model (RCM) is employed to investigate the effect of irrigation on hydrology over California through implementing a “realistic irrigation” scheme. Our results indicate that the RCM with a realistic irrigation scheme commonly practiced in California can capture the soil moisture and evapotranspiration (ET) variation very well in comparison with the available in situ and remote sensing data. The RCM results show significant improvement in comparison with those outputs from the default run and the commonly used runs with fixed soil moisture at field capacity. Furthermore, the model reproduces the observed decreasing trends of the reference ET (i.e., ET0) from the California Irrigation Management Information System (CIMIS). The observed decreasing trend is most likely due to the decreasing trend of downward solar radiation shown by models and CIMIS observations. This issue is fundamental in projecting future irrigation water demand. The deep soil percolation rate changes depending on the irrigation method and irrigation duration. Finally, the model results show that precipitation change due to irrigation in California is relatively small in amount and mainly occurs along the midlatitudes in the western United States
Recommended from our members
Modeling intraseasonal features of 2004 North American monsoon precipitation
This study examines the capabilities and limitations of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) in predicting the precipitation and circulation features that accompanied the 2004 North American monsoon (NAM). When the model is reinitialized every 5 days to restrain the growth of modeling errors, its results for precipitation checked at subseasonal time scales (not for individual rainfall events) become comparable with ground- and satellite-based observations as well as with the NAM's diagnostic characteristics. The modeled monthly precipitation illustrates the evolution patterns of monsoon rainfall, although it underestimates the rainfall amount and coverage area in comparison with observations. The modeled daily precipitation shows the transition from dry to wet episodes on the monsoon onset day over the Arizona-New Mexico region, and the multiday heavy rainfall (>1 mm day-1) and dry periods after the onset. All these modeling predictions agree with observed variations. The model also accurately simulated the onset and ending dates of four major moisture surges over the Gulf of California during the 2004 monsoon season. The model reproduced the strong diurnal variability of the NAM precipitation, but did not predict the observed diurnal feature of the precipitation peak's shift from the mountains to the coast during local afternoon to late night. In general, the model is able to reproduce the major, critical patterns and dynamic variations of the NAM rainfall at intraseasonal time scales, but still includes errors in precipitation quantity, pattern, and timing. The numerical study suggests that these errors are due largely to deficiencies in the model's cumulus convective parameterization scheme, which is responsible for the model's precipitation generation. © 2007 American Meteorological Society
Recommended from our members
Weather, climate, and hydrologic forecasting for the US Southwest: A survey
As part of a regional integrated assessment of climate vulnerability, a survey was conducted from June 1998 to May 2000 of weather, climate, and hydrologic forecasts with coverage of the US Southwest and an emphasis on the Colorado River Basin. The survey addresses the types of forecasts that were issued, the organizations that provided them, and techniques used in their generation. It reflects discussions with key personnel from organizations involved in producing or issuing forecasts, providing data for making forecasts, or serving as a link for communicating forecasts. During the survey period, users faced a complex and constantly changing mix of forecast products available from a variety of sources. The abundance of forecasts was not matched in the provision of corresponding interpretive materials, documentation about how the forecasts were generated, or reviews of past performance. Potential existed for confusing experimental and research products with others that had undergone a thorough review process, including official products issued by the National Weather Service. Contrasts between the state of meteorologic and hydrologic forecasting were notable, especially in the former's greater operational flexibility and more rapid incorporation of new observations and research products. Greater attention should be given to forecast content and communication, including visualization, expression of probabilistic forecasts and presentation of ancillary information. Regional climate models and use of climate forecasts in water supply forecasting offer rapid improvements in predictive capabilities for the Southwest. Forecasts and production details should be archived, and publicly available forecasts should be accompanied by performance evaluations that are relevant to users
A new evolutionary search strategy for global optimization of high-dimensional problems
Global optimization of high-dimensional problems in practical applications remains a major challenge to the research community of evolutionary computation. The weakness of randomization-based evolutionary algorithms in searching high-dimensional spaces is demonstrated in this paper. A new strategy, SP-UCI is developed to treat complexity caused by high dimensionalities. This strategy features a slope-based searching kernel and a scheme of maintaining the particle population's capability of searching over the full search space. Examinations of this strategy on a suite of sophisticated composition benchmark functions demonstrate that SP-UCI surpasses two popular algorithms, particle swarm optimizer (PSO) and differential evolution (DE), on high-dimensional problems. Experimental results also corroborate the argument that, in high-dimensional optimization, only problems with well-formative fitness landscapes are solvable, and slope-based schemes are preferable to randomization-based ones. © 2011 Elsevier Inc. All rights reserved
Recommended from our members
Using airborne lidar to discern age classes of cottonwood trees in a riparian area
Airborne lidar (light detecting and ranging) is a useful tool for probing the structure of forest canopies. Such information is not readily available from other remote sensing methods and is essential for modern forest inventories. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the San Pedro River basin near Benson, Arizona. The lidar data were acquired in June 2004, using Optech's 1233 ALTM during flyovers conducted at an altitude of 600 m. Canopy height, crown diameter, stem dbh, canopy cover, and mean intensity of return laser pulses from the canopy surface were estimated for the cottonwood trees from the data. Linear regression models were used to develop equations relating lidar-derived tree characteristics with corresponding field acquired data for each age class of cottonwoods. The lidar estimates show a good degree of correlation with ground-based measurements. This study also shows that other parameters of young, mature, and old cottonwood trees such as height and canopy cover, when derived from lidar, are significantly different (P < 0.05). Additionally, mean crown diameters of mature and young trees are not statistically different at the study site (P = 0.31). The results illustrate the potential of airborne lidar data to differentiate different age classes of cottonwood trees for riparian areas quickly and quantitatively. Copyright © 2006 by the Society of American Foresters
- …