75 research outputs found

### A More Complicated Hardness Proof for Finding Densest Subgraphs in Bounded Degree Graphs

We consider the Densest-Subgraph problem, where a graph and an integer k is
given and we search for a subgraph on exactly k vertices that induces the
maximum number of edges. We prove that this problem is NP-hard even when the
input graph has maximum degree three

### On Computing Centroids According to the p-Norms of Hamming Distance Vectors

In this paper we consider the p-Norm Hamming Centroid problem which asks to determine whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining whether there exists a string s^* with (sum_{s in S} d^{p}(s^*,s))^(1/p) <=k, where d(,) denotes the Hamming distance metric. This problem has important applications in data clustering and multi-winner committee elections, and is a generalization of the well-known polynomial-time solvable Consensus String (p=1) problem, as well as the NP-hard Closest String (p=infty) problem.
Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the gap for all rational values of p between 1 and infty. Under standard complexity assumptions the reduction also implies that the problem has no 2^o(n+m)-time or 2^o(k^(p/(p+1)))-time algorithm, where m denotes the number of input strings and n denotes the length of each string, for any fixed p > 1. The first bound matches a straightforward brute-force algorithm. The second bound is tight in the sense that for each fixed epsilon > 0, we provide a 2^(k^(p/((p+1))+epsilon))-time algorithm. In the last part of the paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2 approximation algorithm for the problem

### The Parameterized Complexity of the Minimum Shared Edges Problem

We study the NP-complete Minimum Shared Edges (MSE) problem. Given an
undirected graph, a source and a sink vertex, and two integers p and k, the
question is whether there are p paths in the graph connecting the source with
the sink and sharing at most k edges. Herein, an edge is shared if it appears
in at least two paths. We show that MSE is W[1]-hard when parameterized by the
treewidth of the input graph and the number k of shared edges combined. We show
that MSE is fixed-parameter tractable with respect to p, but does not admit a
polynomial-size kernel (unless NP is contained in coNP/poly). In the proof of
the fixed-parameter tractability of MSE parameterized by p, we employ the
treewidth reduction technique due to Marx, O'Sullivan, and Razgon [ACM TALG
2013].Comment: 35 pages, 16 figure

- â€¦