10 research outputs found
Data_Sheet_5_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Data_Sheet_4_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Data_Sheet_3_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Data_Sheet_6_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Data_Sheet_2_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Data_Sheet_1_Classification of elderly pain severity from automated video clip facial action unit analysis: A study from a Thai data repository.PDF
Data from 255 Thais with chronic pain were collected at Chiang Mai Medical School Hospital. After the patients self-rated their level of pain, a smartphone camera was used to capture faces for 10 s at a one-meter distance. For those unable to self-rate, a video recording was taken immediately after the move that causes the pain. The trained assistant rated each video clip for the pain assessment in advanced dementia (PAINAD). The pain was classified into three levels: mild, moderate, and severe. OpenFace© was used to convert the video clips into 18 facial action units (FAUs). Five classification models were used, including logistic regression, multilayer perception, naïve Bayes, decision tree, k-nearest neighbors (KNN), and support vector machine (SVM). Out of the models that only used FAU described in the literature (FAU 4, 6, 7, 9, 10, 25, 26, 27, and 45), multilayer perception is the most accurate, at 50%. The SVM model using FAU 1, 2, 4, 7, 9, 10, 12, 20, 25, and 45, and gender had the best accuracy of 58% among the machine learning selection features. Our open-source experiment for automatically analyzing video clips for FAUs is not robust for classifying pain in the elderly. The consensus method to transform facial recognition algorithm values comparable to the human ratings, and international good practice for reciprocal sharing of data may improve the accuracy and feasibility of the machine learning's facial pain rater.</p
Workflow of the Shiny web application (bit.ly/id_artemisinin_resistance).
<p>Workflow of the Shiny web application (<a href="http://bit.ly/id_artemisinin_resistance" target="_blank">bit.ly/id_artemisinin_resistance</a>).</p
“Use your data” section of the Shiny web application (bit.ly/id_artemisinin_resistance) with a sample result.
<p>“Use your data” section of the Shiny web application (<a href="http://bit.ly/id_artemisinin_resistance" target="_blank">bit.ly/id_artemisinin_resistance</a>) with a sample result.</p
A section of the user interface of the Shiny web application.
<p>(<a href="http://bit.ly/id_artemisinin_resistance" target="_blank">bit.ly/id_artemisinin_resistance</a>).</p