663 research outputs found
Tagging single muons and other long-flying relativistic charged particles by ultra-fast timing in air Cherenkov telescopes
Atmospheric air Cherenkov telescopes are successfully used for ground-based,
very high-energy (VHE) gamma ray astronomy. Triggers from the so-called single
muon and other long-flying relativistic charged particle events are an unwanted
background for the Cherenkov telescope. Because of low rate at TeV energies the
muon background is unimportant. It is much more intense for telescopes with
high photon sensitivity and low energy threshold. Below a few hundred GeV
energy, the so-called muon background becomes so intense, that it can
deteriorate the sensitivity of telescopes (the so-called muon-wall problem).
From general considerations it can be anticipated that the signature of these
particles should be a light pulse with a narrow time structure. In fact,
simulations show that the pulses from muons have a very narrow time profile
that is well below the time resolutions of nearly all currently operating
telescopes. In this report we elaborate on the time profile of Cherenkov light
from the so-called single muons and show that a telescope with ultra-fast time
response can open a new dimension allowing one to tag and to reject those
events.Comment: Accepted by Astroparticle Physic
Search for tau neutrinos at PeV energies and beyond with the MAGIC telescopes
The MAGIC telescopes, located at the Roque de los Muchachos Observatory (2200
a.s.l.) in the Canary Island of La Palma, are placed on the top of a mountain,
from where a window of visibility of about 5 deg in zenith and 80 deg in
azimuth is open in the direction of the surrounding ocean. This permits to
search for a signature of particle showers induced by earth-skimming cosmic tau
neutrinos in the PeV to EeV energy range arising from the ocean. We have
studied the response of MAGIC to such events, employing Monte Carlo simulations
of upward-going tau neutrino showers. The analysis of the shower images shows
that air showers induced by tau neutrinos can be discriminated from the
hadronic background coming from a similar direction. We have calculated the
point source acceptance and the expected event rates, for a sample of generic
neutrino fluxes from photo-hadronic interactions in AGNs. The analysis of about
30 hours of data taken toward the sea leads to a point source sensitivity for
tau neutrinos at the level of the down-going point source analysis of the
Pierre Auger Observatory, if the AUGER observation time is dedicated to a
similar amount by MAGIC.Comment: Proceedings of EPS-HEP 2017, European Physical Society conference on
High Energy Physics, 5-12 July 2017, Venice, Italy. arXiv admin note:
substantial text overlap with arXiv:1708.0614
Sensitivity for tau neutrinos at PeV energies and beyond with the MAGIC telescopes
The MAGIC telescopes, located at the Roque de los Muchachos Observatory (2200
a.s.l.) in the Canary Island of La Palma, are placed on the top of a mountain,
from where a window of visibility of about 5 deg in zenith and 80 deg in
azimuth is open in the direction of the surrounding ocean. This permits to
search for a signature of particle showers induced by earth-skimming cosmic tau
neutrinos in the PeV to EeV energy range arising from the ocean. We have
studied the response of MAGIC to such events, employing Monte Carlo simulations
of upward-going tau neutrino showers. The analysis of the shower images shows
that air showers induced by tau neutrinos can be discriminated from the
hadronic background coming from a similar direction. We have calculated the
point source acceptance and the expected event rates, assuming an incoming tau
neutrino flux consistent with IceCube measurements, and for a sample of generic
neutrino fluxes from photo-hadronic interactions in AGNs. The analysis of about
30 hours of data taken toward the sea leads to a point source sensitivity for
tau neutrinos at the level of the down-going point source analysis of the
Pierre Auger Observatory.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Bexco, Busan, Korea,(arXiv:1708.05153
The background from single electromagnetic subcascades for a stereo system of air Cherenkov telescopes
The MAGIC experiment, a very large Imaging Air Cherenkov Telescope (IACT)
with sensitivity to low energy (E < 100 GeV) VHE gamma rays, has been operated
since 2004. It has been found that the gamma/hadron separation in IACTs becomes
much more difficult below 100 GeV [Albert et al 2008] A system of two large
telescopes may eventually be triggered by hadronic events containing Cherenkov
light from only one electromagnetic subcascade or two gamma subcascades, which
are products of the single pi^0 decay. This is a possible reason for the
deterioration of the experiment's sensitivity below 100 GeV. In this paper a
system of two MAGIC telescopes working in stereoscopic mode is studied using
Monte Carlo simulations. The detected images have similar shapes to that of
primary gamma-rays and they have small sizes (mainly below 400 photoelectrons
(p.e.)) which correspond to an energy of primary gamma-rays below 100 GeV. The
background from single or two electromagnetic subcascdes is concentrated at
energies below 200 GeV. Finally the number of background events is compared to
the number of VHE gamma-ray excess events from the Crab Nebula. The
investigated background survives simple cuts for sizes below 250 p.e. and thus
the experiment's sensitivity deteriorates at lower energies.Comment: 15 pages, 7 figures, published in Journ.of Phys.
Proton-nucleus cross section at high energies
Cross sections for proton inelastic collision with different nuclei are
described within the Glauber and multiple scattering approximations. A
significant difference between approximate `Glauber' formula and exact
calculations with a geometrical scaling assumption for very high-energy cross
section is shown. Experimental values of proton-proton cross sections obtained
using extensive air shower data are based on the relationship of proton-proton
and respective proton-air absorption cross sections. According to obtained
results values reported by the Akeno and Fly's Eye experimental groups are
about 10% overestimated. The proper energy dependence of absorption cross
section for collisions with air nuclei is of a great importance for studies of
high energy cosmic rays using the Monte Carlo technique.Comment: 9pp (9 eps figures
A generalized likelihood ratio test statistic for Cherenkov telescope data
Astrophysical sources of TeV gamma rays are usually established by Cherenkov
telescope observations. These counting type instruments have a field of view of
few degrees in diameter and record large numbers of particle air showers via
their Cherenkov radiation in the atmosphere. The showers are either induced by
gamma rays or diffuse cosmic ray background. The commonly used test statistic
to evaluate a possible gamma-ray excess is Li and Ma (1983), Eq. 17, which can
be applied to independent on- and off-source observations, or scenarios that
can be approximated as such. This formula however is unsuitable if the data are
taken in so-called "wobble" mode (pointing to several offset positions around
the source), if at the same time the acceptance shape is irregular or even
depends on operating parameters such as the pointing direction or telescope
multiplicity. To provide a robust test statistic in such cases, this paper
explores a possible generalization of the likelihood ratio concept on which the
formula of Li and Ma is based. In doing so, the multi-pointing nature of the
data and the typically known instrument point spread function are fully
exploited to derive a new, semi-numerical test statistic. Due to its
flexibility and robustness against systematic uncertainties, it is not only
useful for detection purposes, but also for skymapping and source shape
fitting. Simplified Monte Carlo simulations are presented to verify the
results, and several applications and further generalizations of the concept
are discussed.Comment: 27 pages, 8 figure
- …