107,172 research outputs found
Properties of KCoAs and Alloys with Fe and Ru: Density Functional Calculations
Electronic structure calculations are presented for KCoAs and alloys
with KFeAs and KRuAs. These materials show electronic
structures characteristic of coherent alloys, with a similar Fermi surface
structure to that of the Fe-based superconductors, when the electron count
is near six per transition metal. However, they are less magnetic than the
corresponding Fe compounds. These results are discussed in relation to
superconductivity.Comment: 5 page
Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys
Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site
driven ferroelectricity, even though the average tolerance factor is
significantly smaller than unity and there is no stereochemically active A-site
ion. This is due to the frustration of tilt instabilities by A-site disorder.
There are very large off-centerings of the Li ions, which contribute strongly
to the anisotropy between the tetragonal and rhombohedral ferroelectric states,
yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure
Electronic Structure and Bulk Spin Valve Behavior in CaRuO
We report density functional calculations of the magnetic properties and
Fermiology of CaRuO. The ground state consists of ferromagnetic
bilayers, stacked antiferromagnetically. The bilayers are almost but not
exactly half-metallic. In the ferromagnetic state opposite spin polarizations
are found for in-plane and out-of-plane transport. Relatively high out of plane
conductivity is found for the majority spin, which is relatively weakly
conductive in-plane. In the ground state in-plane quantities are essentially
the same, but the out of plane transport is strongly reduced.Comment: 5 page
Electronic structure of Ba(Fe,Ru)2As2 and Sr(Fe,Ir)2As2 alloys
The electronic structures of Ba(Fe,Ru)As and Sr(Fe,Ir)As are
investigated using density functional calculations. We find that these systems
behave as coherent alloys from the electronic structure point of view. In
particular, the isoelectronic substitution of Fe by Ru does not provide doping,
but rather suppresses the spin density wave characteristic of the pure Fe
compound by a reduction in the Stoner enhancement and an increase in the band
width due hybridization involving Ru. The electronic structure near the Fermi
level otherwise remains quite similar to that of BaFeAs. The
behavior of the Ir alloy is similar, except that in this case there is
additional electron doping
Comment on Structural Stability and Electronic Structure for LiAlH
Density functional calculations of the electronic structure are used to
elucidate the bonding of LiAlH. It is found that this material is best
described as ionic, and in particular that the [AlH] units are not
reasonably viewed as substantially covalent
Origin of ferromagnetism in CsAgF: importance of Ag - F covalency
The magnetic nature of CsAgF, an isoelectronic and isostructural
analogue of LaCuO, is analyzed using density functional calculations.
The ground state is found to be ferromagnetic and nearly half metallic. We find
strong hybridization of Ag- and F- states. Substantial moments reside on
the F atoms, which is unusual for the halides and reflects the chemistry of the
Ag(II) ions in this compound. This provides the mechanism for ferromagnetism,
which we find to be itinerant in character, a result of a Stoner instability
enhanced by Hund's coupling on the F
- β¦