223 research outputs found
Correction: Insights into avian molecular cytogenetics — with reptilian comparisons
Correction: Molecular Cytogenetics (2024) 17:24
https://doi.org/10.1186/s13039-024-00696-y
The original article contained numerous minor typesetting mistakes which were mistakenly carried forward by the production team which handled the manuscript. Each error has since been amended
Insights into avian molecular cytogenetics—with reptilian comparisons
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions
The application of microsatellite markers as molecular tools for studying genomic variability in vertebrate populations
Vertebrate molecular genetic research methods typically employ single genetic loci (monolocus markers) and those involving a variable number of loci (multilocus markers). The former often employ microsatellites that ensure accuracy in establishing inbreeding, tracking pan-generational dynamics of genetic parameters, assessing genetic purity, and facilitating genotype/phenotype correlations. They also enable the determination and identification of unique alleles by studying and managing marker-assisted breeding regimes to control the artificial selection of agriculturally important traits. Microsatellites consist of 2–6 nucleotides that repeat numerous times and are widely distributed throughout genomes. Their main advantages lie in their ease of use for PCR amplification, their known genome localization, and their incredible polymorphism (variability) levels. Robust lab-based molecular technologies are supplemented by high-quality statistics and bioinformatics and have been widely employed, especially in those instances when more costly, high throughput techniques are not available. Here, we consider that human and livestock microsatellite studies have been a “roadmap” for the genetics, breeding, and conservation of wildlife and rare animal breeds. In this context, we examine humans and other primates, cattle and other artiodactyls, chickens and other birds, carnivores (cats and dogs), elephants, reptiles, amphibians, and fish. Studies originally designed for mass animal production have thus been adapted to save less abundant species, highlighting the need for molecular scientists to consider where research may be applied in different disciplines
Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome
Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes
Avian cytogenomics: Small chromosomes, long evolutionary history
This review considers fundamental issues related to the genomics of birds (Aves), including the special organization and evolution of their chromosomes. In particular, we address the capabilities of molecular genetic/genomic approaches to clarify aspects of their evolutionary history, including how they have adapted to multiple habitats. We contemplate general genomic organization, including the small size and typical number of micro/macrochromosomes. We discuss recent genome sequencing efforts and how this relates to cytogenomic studies. We consider the emergence of this unique organization ~245 million years ago, examining examples where the “norm” is not followed. We address the functional role of synteny disruptions, centromere repositioning, repetitive elements, evolutionary breakpoints, synteny blocks and the role of the unique ZW sex chromosome system. By analyzing the cytogenetic maps and chromosomal rearrangements of eight species, the possibility of successfully applying modern genomic methods/technologies to identify general and specific features of genomic organization and an in-depth understanding of the fundamental patterns of the evolution of avian genomes are demonstrated. An interpretation of the observed genomic “variadicity” and specific chromosomal rearrangements is subsequently proposed. We also present a mathematical assessment of cross-species bacterial artificial chromosome (BAC) hybridization during genomic mapping in the white-throated sparrow, a species considered a key model of avian behavior. Building on model species (e.g., chicken), avian cytogenomics now encompasses hundreds of genomes across nearly all families, revealing remarkable genomic conservation with many dynamic aspects. Combining classical cytogenetics, high-throughput sequencing and emerging technologies provides increasingly detailed insights into the structure, function and evolutionary organization of these remarkable genomes
Saving the Mahachai Betta: Genetic erosion and conservation priorities under urbanization pressure
Background/Objectives: Mahachai Betta (Betta mahachaiensis) is a bubble-nesting fighting fish endemic to brackish habitats in Bangkok, Samut Sakhon, and Samut Prakan, where rapid urbanization and industrial growth threaten persistence. We evaluated genetic structure and diversity across 10 populations (81 individuals) to inform conservation planning. Methods: This study combined microsatellite genotyping (13 loci) with ecological niche modeling to assess genetic variability, population connectivity, and landscape–environmental drivers of differentiation. Results: Habitat loss and fragmentation were associated with reduced gene flow and decreased genetic diversity. Mean allelic richness was 2.65 and expected heterozygosity ranged from 0.20 to 0.46, with FST values up to 0.400. Forward simulations predicted severe erosion of diversity within the next 12.5–37.5 years. Populations showed clear genetic subdivision, most pronounced in Samut Prakan and Samut Sakhon, with two Samut Sakhon populations (SKN3 and SKN7) reflecting strong environmental heterogeneity. Conclusions: Improving habitat connectivity and intensifying local community engagement are priority actions to enhance the resilience and long-term persistence of Mahachai Betta. This study provides the first integrated genetic and landscape-based assessment of the species, highlighting its rapid genetic erosion under urbanization and offering a foundation for targeted, evidence-based conservation strategies
Characterization of five complete Cyrtodactylus mitogenome structures reveals low structural diversity and conservation of repeated sequences in the lineage
Mitochondrial genomes (mitogenomes) of five Cyrtodactylus were determined. Their compositions and structures were similar to most of the available gecko lizard mitogenomes as 13 protein-coding, two rRNA and 22 tRNA genes. The non-coding control region (CR) of almost all Cyrtodactylus mitogenome structures contained a repeated sequence named the 75-bp box family, except for C. auribalteatus which contained the 225-bp box. Sequence similarities indicated that the 225-bp box resulted from the duplication event of 75-bp boxes, followed by homogenization and fixation in C. auribalteatus. The 75-bp box family was found in most gecko lizards with high conservation (55–75% similarities) and could form secondary structures, suggesting that this repeated sequence family played an important role under selective pressure and might involve mitogenome replication and the likelihood of rearrangements in CR. The 75-bp box family was acquired in the common ancestral genome of the gecko lizard, evolving gradually through each lineage by independent nucleotide mutation. Comparison of gecko lizard mitogenomes revealed low structural diversity with at least six types of mitochondrial gene rearrangements. Cyrtodactylus mitogenome structure showed the same gene rearrangement as found in most gecko lizards. Advanced mitogenome information will enable a better understanding of structure evolution mechanisms
Genetic Diversity and Selection of MHC I-UAA in Clariid Catfish from Thailand: Implications for Breeding and Conservation
Background/Objectives: Understanding variabilities in the Major Histocompatibility Complex class I (MHC I) gene is essential for evaluating immunogenetic diversity in clariid catfish. MHC I plays a critical role in immune defense by presenting endogenous antigens to cytotoxic T cells. Therefore, we aimed to investigate the genetic diversity, selection patterns, and phylogenetic relationships of MHC I alleles in three important clariid catfish species (Clarias gariepinus, Clarias macrocephalus, and Clarias batrachus) across wild and hatchery populations in Thailand. Methods: Targeted next-generation sequencing of a 174 bp fragment partial exon 6 of MHC I-UAA gene was performed, along with phylogenetic analyses, neutrality tests and dN/dS analyses. Results: Overall, 91 novel alleles were identified in 674 individuals, all of which were novel (100% novelty), with none matching existing reference sequences, thereby revealing extensive variation in population-specific variants. Phylogenetic analyses revealed allele sharing among species, which was consistent with balanced selection. Neutrality tests and dN/dS analyses provided evidence of both purifying and diversifying selection, with episodic positive selection detected at multiple codon sites associated with the antigen-binding α1 domain. Distinct selection patterns among populations, influenced by local environmental conditions and human pressures, along with high allele richness, are reflected in the diversity of immunogenetic variations. Conclusions: These findings provide critical insights into immune adaptation and highlight the potential of MHC I as a functional marker for genetic monitoring. Although a causal relationship between MHC I polymorphism and disease resistance is debated, studies suggest associations with pathogen survival, indicating future implications for aquaculture breeding and conservation, particularly in marker-assisted selection for broodstock management in Thailand
Phuphan chicken breeds: classification as varieties or distinct breeds with three derivative groups using microsatellite genotyping
Objective Indigenous and local breeds, such as Phuphan chickens, are vital due to their adaptability and nutritional value. However, the precise origin, historical records, and genetic diversity of Phuphan chickens remain unclear. This study aimed to evaluate origin and genetic diversity of four Phuphan chicken groups from the Phuphan Royal Development Study Centre. Methods This study assesses four groups of Phuphan chicken: Phuphan black 1 (SK-B1), Phuphan black 2 (KU-BM/F), Phuphan white (KU-WM/F), and Phuphan color (KU-VM/F) using 28 microsatellite markers and comparing them with those of other Thai chicken breeds within “The Siam Chicken Bioresource Project” database. Results The results highlighted significant genetic diversity among these groups (mean expected heterozygosity [He] = 0.623±0.014; Allelic richness [AR] = 4.594±0.124), indicating effective management through the breeding program of the Phuphan Royal Development Study Centre. Population structure analyses revealed distinct gene pools, emphasizing the genetic uniqueness of SK-B1 relative to the other three groups. Bayesian inference validated historical genetic exchanges, primarily among KU-BM/F, KU-WM/F, and KU-VM/F, with limited exchanges involving SK-B1. This suggests that the Phuphan chicken groups share a common lineage, primarily distinguished by variations in plumage color, resulting from residual selection processes. Microsatellite markers pinpointed the loci LEI0234, MCW206, MCW0016, MCW0222, MCW0098, MCW0165, and ADL0278 as potentially subject to directional selection and associated with plumage color variation among the Phuphan chicken groups. Comparative evaluations with other Thai indigenous local chickens and red junglefowl revealed a closer affinity of SK-B1 to existing Thai chicken breeds, suggesting it may represent a variant of these breeds. Alternatively, KU-BM/F, KU-WM/F, and KU-VM/F, which exhibited comparable external characteristics, may constitute a novel breed of Phuphan chicken. Conclusion The findings may enhance understanding on genetic architecture of Phuphan chicken groups and contribute to Thailand’s economic growth while preserving the genetic diversity of the indigenous chickens
Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?
Background
Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes.
Results
We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes.
Conclusions
The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes
- …
