11 research outputs found

    Additional file 11: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affecting the activity of miR-22/IPO7/HIF-1Îą axis

    No full text
    Figure S6. IPO7/miRNAs correlation. a Analysis performed by using microRNA target prediction software miRSearch V3.0 showed that IPO7 is a validated target of miR-22 and miR-9. b Analysis of predicted multiple targets performed by MicroRNA Target prediction (miRTar) tool ( http://mirtar.mbc.nctu.edu.tw/human/ ) revealed within the CurcuDown-Regulated dataset the presence of several of miR-22 targets beside IPO7. No target of miR-9 was found. (PPTX 179 kb

    Additional file 2: of The phospholipase DDHD1 as a new target in colorectal cancer therapy

    No full text
    Figure S1. DDHD1 silencing. To evaluate DDHD1 silencing a. Real-time PCR and b. Western blot analysis were performed on SW480, HCT116, HS5 and HUVEC transfected for 48 or 72 h with scrambled siRNA or DDHD1 siRNA. (TIFF 6629 kb

    Identification of Prostate-Enriched Proteins by In-depth Proteomic Analyses of Expressed Prostatic Secretions in Urine

    No full text
    Urinary expressed prostatic secretion or “EPS-urine” is proximal tissue fluid that is collected after a digital rectal exam (DRE). EPS-urine is a rich source of prostate-derived proteins that can be used for biomarker discovery for prostate cancer (PCa) and other prostatic diseases. We previously conducted a comprehensive proteome analysis of direct expressed prostatic secretions (EPS). In the current study, we defined the proteome of EPS-urine employing Multidimensional Protein Identification Technology (MudPIT) and providing a comprehensive catalogue of this body fluid for future biomarker studies. We identified 1022 unique proteins in a heterogeneous cohort of 11 EPS-urines derived from biopsy negative noncancer diagnoses with some benign prostatic diseases (BPH) and low-grade PCa, representative of secreted prostate and immune system-derived proteins in a urine background. We further applied MudPIT-based proteomics to generate and compare the differential proteome from a subset of pooled urines (pre-DRE) and EPS-urines (post-DRE) from noncancer and PCa patients. The direct proteomic comparison of these highly controlled patient sample pools enabled us to define a list of prostate-enriched proteins detectable in EPS-urine and distinguishable from a complex urine protein background. A combinatorial analysis of both proteomics data sets and systematic integration with publicly available proteomics data of related body fluids, human tissue transcriptomic data, and immunohistochemistry images from the Human Protein Atlas database allowed us to demarcate a robust panel of 49 prostate-derived proteins in EPS-urine. Finally, we validated the expression of seven of these proteins using Western blotting, supporting the likelihood that they originate from the prostate. The definition of these prostatic proteins in EPS-urine samples provides a reference for future investigations for prostatic-disease biomarker studies