65 research outputs found

    La fundación de la Madrasa al-Adāb por la Asociación de ulemas musulmanes argelinos en la ciudad de Hennaya (Tremecén) en 1950

    Get PDF
    A biphenyl-fused BODIPY was synthesized through a facile oxidative cyclization of peripheral aryl-substituents at the β-position of the BODIPY unit. The extended Ļ€-system of the fused BODIPY induces near-infrared (NIR) absorption and strong π–π interactions in the solid state. These features are beneficial for the application of the dye as a functional material. The biphenyl-fused BODIPY dye was demonstrated to exhibit photocurrent conversion ability on the basis of its <i>n</i>-type semiconducting property

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Ratiometric Flapping Force Probe That Works in Polymer Gels

    No full text
    Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film

    Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization

    No full text
    Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20–65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load–unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics

    Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization

    No full text
    Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20–65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load–unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics

    A Pentacoordinate Boron-Containing π‑Electron System with Cl–B–Cl Three-Center Four-Electron Bonds

    No full text
    Tricoordinate boron-containing Ļ€-electron systems are an attractive class of compounds with intense fluorescence and strong electron-accepting properties. However, the impact of pentacoordination of the boron atoms on their properties has not been determined. We now disclose a <i>B</i>,<i>B</i>′-bisĀ­(1,8-dichloro-9-anthryl)-substituted 9,10-dihydro-9,10-diboraanthracene as a new pentacoordinate organoboron compound. In this skeleton, with the aid of the orthogonal arrangement of the anthryl substituent, the B and Cl atoms can form a three-center four-electron (3c–4e) Cl–B–Cl bond. The pentacoordination of the boron atom significantly perturbs the electronic structure and thereby the photophysical and electrochemical properties
    • …
    corecore