55 research outputs found

    River basin boundary dataset

    No full text
    Boundary dataset of 6 major river basins and 218 subbasin

    Additional file 1 of GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1

    No full text
    Additional file 1: Fig. S1. The qPCR analysis of subcutaneous fat in Shaziling and Yorkshire pigs at different growth stages. (A-C) Relative mRNA expression of marker genes for mature adipocyte (FABP4 and LEP) (A), adipogenic differentiation (CEBPα) (B), and fatty acid synthesis (FASN) (C) (n = 6). Error bars represent SEM, * P < 0.05, ** P < 0.01, *** P < 0.001, two-tailed Student’s t-test

    Table2_Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions.docx

    No full text
    Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.</p

    Table8_Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions.docx

    No full text
    Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.</p

    Table5_Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions.docx

    No full text
    Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.</p

    Table7_Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions.docx

    No full text
    Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.</p

    Effects of Coal Functional Groups on Adsorption Microheat of Coal Bed Methane

    No full text
    This study measured the adsorption heat for five groups of Chinese coal samples of different ranks at 15 °C and 0.101 MPa using a C80 microcalorimeter. The functional groups of the coal samples were determined by infrared spectroscopy according to quantum chemical theory. The effects of coalification and coal functional groups on the adsorption heat of coal for methane were discussed in terms of energy. As a result, this study has further perfected the adsorption theory of coal bed methane. The results show that the adsorption heat of coal for methane first increases, then decreases with increasing coal rank and reaches a minimum at the fat coal stage. This indicates that coalification has a significant effect on the characteristics of the adsorption heat of coal for methane. These effects can be clearly classified into stages. Coalification influences the adsorption heat for methane by changing the type of coal, the content of oxygen-containing functional groups, and the pore structure. Oxygen-containing functional groups influence the adsorption heat of coal for methane via the adsorption potential of the methane molecules. In the long-flame coal stage, a high content of oxygen-containing functional groups leads to a high adsorption heat of the coal for methane. In the fat coal to coking stages, large numbers of aliphatic series, aliphatic functional groups, and side chains of aromatic condensed nuclei are removed from the coal molecules under the influence of mechanical compression and dehydration. The decrease in oxygen-containing functional groups results in a decrease in the adsorption potential of the coal and a minimum value of its adsorption heat for methane. In the coking coal stage, the adsorption heat for methane changes little because of the weak influences of mechanical compression and dehydration. In the high-rank coal stage (lean coal and anthracite), the internal surface area of the coal increases, with micropores and transition pores caused by the significantly higher degree of aromatization of the coal. This increase in internal surface area improves the adsorption heat of coal for methane to some extent

    Table6_Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions.docx

    No full text
    Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.</p
    corecore