17 research outputs found

    A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues

    Full text link
    Discourse structures are beneficial for various NLP tasks such as dialogue understanding, question answering, sentiment analysis, and so on. This paper presents a deep sequential model for parsing discourse dependency structures of multi-party dialogues. The proposed model aims to construct a discourse dependency tree by predicting dependency relations and constructing the discourse structure jointly and alternately. It makes a sequential scan of the Elementary Discourse Units (EDUs) in a dialogue. For each EDU, the model decides to which previous EDU the current one should link and what the corresponding relation type is. The predicted link and relation type are then used to build the discourse structure incrementally with a structured encoder. During link prediction and relation classification, the model utilizes not only local information that represents the concerned EDUs, but also global information that encodes the EDU sequence and the discourse structure that is already built at the current step. Experiments show that the proposed model outperforms all the state-of-the-art baselines.Comment: Accepted to AAAI 201

    Defending LLMs against Jailbreaking Attacks via Backtranslation

    Full text link
    Although many large language models (LLMs) have been trained to refuse harmful requests, they are still vulnerable to jailbreaking attacks which rewrite the original prompt to conceal its harmful intent. In this paper, we propose a new method for defending LLMs against jailbreaking attacks by ``backtranslation''. Specifically, given an initial response generated by the target LLM from an input prompt, our backtranslation prompts a language model to infer an input prompt that can lead to the response. The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt, since it is generated based on the LLM's response and not directly manipulated by the attacker. We then run the target LLM again on the backtranslated prompt, and we refuse the original prompt if the model refuses the backtranslated prompt. We explain that the proposed defense provides several benefits on its effectiveness and efficiency. We empirically demonstrate that our defense significantly outperforms the baselines, in the cases that are hard for the baselines, and our defense also has little impact on the generation quality for benign input prompts. Our implementation is based on our library for LLM jailbreaking defense algorithms at \url{https://github.com/YihanWang617/llm-jailbreaking-defense}, and the code for reproducing our experiments is available at \url{https://github.com/YihanWang617/LLM-Jailbreaking-Defense-Backtranslation}

    On the Adversarial Robustness of Vision Transformers

    Full text link
    Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). This observation also holds for certified robustness. We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations

    Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation

    Full text link
    Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control. However, formal (Lyapunov) stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain, and most existing approaches rely on expensive solvers such as sums-of-squares (SOS), mixed-integer programming (MIP), or satisfiability modulo theories (SMT). In this paper, we demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations. We propose a novel formulation that defines a larger verifiable region-of-attraction (ROA) than shown in the literature, and refines the conventional restrictive constraints on Lyapunov derivatives to focus only on certifiable ROAs. The Lyapunov condition is rigorously verified post-hoc using branch-and-bound with scalable linear bound propagation-based NN verification techniques. The approach is efficient and flexible, and the full training and verification procedure is accelerated on GPUs without relying on expensive solvers for SOS, MIP, nor SMT. The flexibility and efficiency of our framework allow us to demonstrate Lyapunov-stable output feedback control with synthesized NN-based controllers and NN-based observers with formal stability guarantees, for the first time in literature. Source code at https://github.com/Verified-Intelligence/Lyapunov_Stable_NN_ControllersComment: Paper accepted by ICML 202

    Red Teaming Language Model Detectors with Language Models

    Full text link
    The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent works have proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems.Comment: Preprint. Accepted by TAC
    corecore