112 research outputs found
Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval
Free-hand sketch-based image retrieval (SBIR) is a specific cross-view
retrieval task, in which queries are abstract and ambiguous sketches while the
retrieval database is formed with natural images. Work in this area mainly
focuses on extracting representative and shared features for sketches and
natural images. However, these can neither cope well with the geometric
distortion between sketches and images nor be feasible for large-scale SBIR due
to the heavy continuous-valued distance computation. In this paper, we speed up
SBIR by introducing a novel binary coding method, named \textbf{Deep Sketch
Hashing} (DSH), where a semi-heterogeneous deep architecture is proposed and
incorporated into an end-to-end binary coding framework. Specifically, three
convolutional neural networks are utilized to encode free-hand sketches,
natural images and, especially, the auxiliary sketch-tokens which are adopted
as bridges to mitigate the sketch-image geometric distortion. The learned DSH
codes can effectively capture the cross-view similarities as well as the
intrinsic semantic correlations between different categories. To the best of
our knowledge, DSH is the first hashing work specifically designed for
category-level SBIR with an end-to-end deep architecture. The proposed DSH is
comprehensively evaluated on two large-scale datasets of TU-Berlin Extension
and Sketchy, and the experiments consistently show DSH's superior SBIR
accuracies over several state-of-the-art methods, while achieving significantly
reduced retrieval time and memory footprint.Comment: This paper will appear as a spotlight paper in CVPR201
Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation
Visual tracking is a fundamental problem in computer vision. Recently, some
deep-learning-based tracking algorithms have been achieving record-breaking
performances. However, due to the high complexity of deep learning, most deep
trackers suffer from low tracking speed, and thus are impractical in many
real-world applications. Some new deep trackers with smaller network structure
achieve high efficiency while at the cost of significant decrease on precision.
In this paper, we propose to transfer the feature for image classification to
the visual tracking domain via convolutional channel reductions. The channel
reduction could be simply viewed as an additional convolutional layer with the
specific task. It not only extracts useful information for object tracking but
also significantly increases the tracking speed. To better accommodate the
useful feature of the target in different scales, the adaptation filters are
designed with different sizes. The yielded visual tracker is real-time and also
illustrates the state-of-the-art accuracies in the experiment involving two
well-adopted benchmarks with more than 100 test videos.Comment: 6 page
- …