61 research outputs found
Estimating individual treatment effect: generalization bounds and algorithms
There is intense interest in applying machine learning to problems of causal
inference in fields such as healthcare, economics and education. In particular,
individual-level causal inference has important applications such as precision
medicine. We give a new theoretical analysis and family of algorithms for
predicting individual treatment effect (ITE) from observational data, under the
assumption known as strong ignorability. The algorithms learn a "balanced"
representation such that the induced treated and control distributions look
similar. We give a novel, simple and intuitive generalization-error bound
showing that the expected ITE estimation error of a representation is bounded
by a sum of the standard generalization-error of that representation and the
distance between the treated and control distributions induced by the
representation. We use Integral Probability Metrics to measure distances
between distributions, deriving explicit bounds for the Wasserstein and Maximum
Mean Discrepancy (MMD) distances. Experiments on real and simulated data show
the new algorithms match or outperform the state-of-the-art.Comment: Added name "TARNet" to refer to version with alpha = 0. Removed sup
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Understanding predictions made by deep neural networks is notoriously
difficult, but also crucial to their dissemination. As all ML-based methods,
they are as good as their training data, and can also capture unwanted biases.
While there are tools that can help understand whether such biases exist, they
do not distinguish between correlation and causation, and might be ill-suited
for text-based models and for reasoning about high level language concepts. A
key problem of estimating the causal effect of a concept of interest on a given
model is that this estimation requires the generation of counterfactual
examples, which is challenging with existing generation technology. To bridge
that gap, we propose CausaLM, a framework for producing causal model
explanations using counterfactual language representation models. Our approach
is based on fine-tuning of deep contextualized embedding models with auxiliary
adversarial tasks derived from the causal graph of the problem. Concretely, we
show that by carefully choosing auxiliary adversarial pre-training tasks,
language representation models such as BERT can effectively learn a
counterfactual representation for a given concept of interest, and be used to
estimate its true causal effect on model performance. A byproduct of our method
is a language representation model that is unaffected by the tested concept,
which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at:
https://amirfeder.github.io/CausaLM/ Under review for the Computational
Linguistics journa
Aiming for Relevance
Vital signs are crucial in intensive care units (ICUs). They are used to
track the patient's state and to identify clinically significant changes.
Predicting vital sign trajectories is valuable for early detection of adverse
events. However, conventional machine learning metrics like RMSE often fail to
capture the true clinical relevance of such predictions. We introduce novel
vital sign prediction performance metrics that align with clinical contexts,
focusing on deviations from clinical norms, overall trends, and trend
deviations. These metrics are derived from empirical utility curves obtained in
a previous study through interviews with ICU clinicians. We validate the
metrics' usefulness using simulated and real clinical datasets (MIMIC and
eICU). Furthermore, we employ these metrics as loss functions for neural
networks, resulting in models that excel in predicting clinically significant
events. This research paves the way for clinically relevant machine learning
model evaluation and optimization, promising to improve ICU patient care. 10
pages, 9 figures.Comment: 10 pages, 9 figures, AMIA Informatics 202
Causal Effect Inference with Deep Latent-Variable Models
Learning individual-level causal effects from observational data, such as
inferring the most effective medication for a specific patient, is a problem of
growing importance for policy makers. The most important aspect of inferring
causal effects from observational data is the handling of confounders, factors
that affect both an intervention and its outcome. A carefully designed
observational study attempts to measure all important confounders. However,
even if one does not have direct access to all confounders, there may exist
noisy and uncertain measurement of proxies for confounders. We build on recent
advances in latent variable modeling to simultaneously estimate the unknown
latent space summarizing the confounders and the causal effect. Our method is
based on Variational Autoencoders (VAE) which follow the causal structure of
inference with proxies. We show our method is significantly more robust than
existing methods, and matches the state-of-the-art on previous benchmarks
focused on individual treatment effects.Comment: Published as a conference paper at NIPS 201
- …