1,774 research outputs found

    On the structure of the adjacency matrix of the line digraph of a regular digraph

    Get PDF
    We show that the adjacency matrix M of the line digraph of a d-regular digraph D on n vertices can be written as M=AB, where the matrix A is the Kronecker product of the all-ones matrix of dimension d with the identity matrix of dimension n and the matrix B is the direct sum of the adjacency matrices of the factors in a dicycle factorization of D.Comment: 5 page

    On the Cayley digraphs that are patterns of unitary matrices

    Full text link
    A digraph D is the pattern of a matrix M when D has an arc ij if and only if the ij-th entry of M is nonzero. Study the relationship between unitary matrices and their patterns is motivated by works in quantum chaology and quantum computation. In this note, we prove that if a Cayley digraph is a line digraph then it is the pattern of a unitary matrix. We prove that for any finite group with two generators there exists a set of generators such that the Cayley digraph with respect to such a set is a line digraph and hence the pattern of a unitary matrix

    Some Ulam's reconstruction problems for quantum states

    Full text link
    Provided a complete set of putative kk-body reductions of a multipartite quantum state, can one determine if a joint state exists? We derive necessary conditions for this to be true. In contrast to what is known as the quantum marginal problem, we consider a setting where the labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam's reconstruction conjecture in graph theory. The conjecture - still unsolved - claims that every graph on at least three vertices can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering quantum states, we demonstrate that the non-existence of joint states can, in some cases, already be inferred from a set of marginals having the size of just more than half of the parties. We apply these methods to graph states, where many constraints can be evaluated by knowing the number of stabilizer elements of certain weights that appear in the reductions. This perspective links with constraints that were derived in the context of quantum error-correcting codes and polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations that limit the correlations arising from quantum states. Lastly, we provide an answer to Ulam's reconstruction problem for generic quantum states.Comment: 22 pages, 3 figures, v2: significantly revised final versio
    • …
    corecore