8 research outputs found
Complexity Reduction in Fuzzy Systems
Electrical Engineering, Mathematics and Computer Scienc
Compact and transparent fuzzy models and classifiers through iterative complexity reduction
Errata on "Ga-fuzzy modeling and classification: Complexity and performance" and "compact and transparent fuzzy models and classifiers through iterative complexity reduction"
GA-fuzzy modeling and classification: Complexity and performance
Abstract—The use of genetic algorithms (GAs) and other evolutionary optimization methods to design fuzzy rules for systems modeling and data classification have received much attention in recent literature. Authors have focused on various aspects of these randomized techniques, and a whole scale of algorithms have been proposed. We comment on some recent work and describe a new and efficient two-step approach that leads to good results for function approximation, dynamic systems modeling and data classification problems. First fuzzy clustering is applied to obtain a compact initial rule-based model. Then this model is optimized by a real-coded GA subjected to constraints that maintain the semantic properties of the rules. We consider four examples from the literature: a synthetic nonlinear dynamic systems model, the iris data classification problem, the wine data classification problem, and the dynamic modeling of a diesel engine turbocharger. The obtained results are compared to other recently proposed methods. Index Terms—Classification, dynamic systems, fuzzy clustering, real-coded genetic algorithm (GA), Takagi–Sugeno–Kang (TSK) fuzzy model. I
Similarity measures in fuzzy rule base simplification
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzzy sets are merged to create a common fuzzy set to replace them in the rule base. If the redundancy in the model is high, merging similar fuzzy sets might result in equal rules that also can be merged, thereby reducing the number of rules as well. The simplified rule base is computationally more efficient and linguistically more tractable. The approach has been successfully applied to fuzzy models of real world system