5,148 research outputs found
On the Observability of Giant Protoplanets in Circumstellar Disks
We investigate the possibility to detect giant planets that are still
embedded in young circumstellar disks. Based on models with different stellar,
planetary, and disk masses, and different radial positions of the planet we
analyze the resulting submillimeter appearance of these systems. We find that
the influence of the planet on the spectral energy distribution could not be
distinguished from that of other disk parameters. However, dust reemission
images of the disks show that the hot region in the proximity of a young
planet, along with the gap, could indeed be detected and mapped with the
Atacama Large Millimeter Array in the case of nearby circumstellar disks
(d<100pc) in approximate face-on orientation.Comment: ApJ, in pres
Porous dust grains in debris disks
When modeling the density and grain size distribution in debris disks, the
minimum particle size is often significantly larger than the corresponding
blowout size. While the dust particles are usually modeled as compact,
homogenous spheres, we instead investigate the impact of porosity. The optical
properties of porous particles are determined, and the influences of porosity
on the blowout size and dust temperatures investigated. Using the method of
discrete dipole approximation, we calculate the scattering and absorption cross
sections of porous particles and derive the blowout size and the behavior of
the dust temperature. We investigate the influence on the beta-ratio. Blowout
sizes are calculated for various stellar luminosities and porosities, and an
approximation equation is derived to estimate the blowout size as a function of
these parameters. Furthermore, we investigate the influence of the porosity on
the dust equilibrium temperature. The blowout size increases with the particle
porosity and stellar luminosity. The dust temperature of porous particles is
lower than the one of the compact spheres, in particular the temperature of
blowout grains decreases for porous particles.Comment: 10 pages, 18 figure
Large-scale Vortices in Protoplanetary Disks: On the observability of possible early stages of planet formation
We investigate the possibility of mapping large-scale anti-cyclonic vortices,
resulting from a global baroclinic instability, as pre-cursors of planet
formation in proto-planetary disks with the planned Atacama Large Millimeter
Array (ALMA). On the basis of three-dimensional radiative transfer simulations,
images of a hydrodynamically calculated disk are derived which provide the
basis for the simulation of ALMA. We find that ALMA will be able to trace the
theoretically predicted large-scale anti-cyclonic vortex and will therefore
allow testing of existing models of this very early stage of planet formation
in circumstellar disks.Comment: Accepted by ApJ (Letters section). A preprint version with
high-quality figures can be downloaded from
http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/
vortex.ps.g
In-situ analysis of optically thick nanoparticle clouds
Nanoparticles grown in reactive plasmas and nanodusty plasmas gain high
interest from basic science and technology. One of the great challenges of
nanodusty plasmas is the in-situ diagnostic of the nanoparticle size and
refractive index. The analysis of scattered light by means of the Mie solution
of the Maxwell equations was proposed and used as an in-situ size diagnostic
during the past two decades. Today, imaging ellipsometry techniques and the
investigation of dense, i. e. optically thick nanoparticle clouds demand for
analysis methods to take multiple scattering into account. We present the first
3D Monte-Carlo polarized radiative transfer simulations of the scattered light
in a dense nanodusty plasma. This technique extends the existing diagnostic
methods for the in-situ analysis of the properties of nanoparticles to systems
where multiple scattering can not be neglected.Comment: 5 pages, 5 figure
The circumstellar disk of FS Tau B - A self-consistent model based on observations in the mid-infrared with NACO -
Protoplanetary disks are a byproduct of the star formation process. In the
dense mid-plane of these disks, planetesimals and planets are expected to form.
The first step in planet formation is the growth of dust particles from
submicrometer-sized grains to macroscopic mm-sized aggregates. The grain growth
is accompanied by radial drift and vertical segregation of the particles within
the disk. To understand this essential evolutionary step, spatially resolved
multi-wavelength observations as well as photometric data are necessary which
reflect the properties of both disk and dust. We present the first spatially
resolved image obtained with NACO at the VLT in the L band of the
near edge-on protoplanetary disk FS Tau B. Based on this new image, a
previously published Hubble image in H band and the spectral energy
distribution from optical to millimeter wavelengths, we derive constraints on
the spatial dust distribution and the progress of grain growth. For this
purpose we perform a disk modeling using the radiative transfer code MC3D.
Radial drift and vertical sedimentation of the dust are not considered. We find
a best-fit model which features a disk extending from to several
hundreds AU with a moderately decreasing surface density and
. The inclination amounts
to . Our findings indicate that substantial dust grain growth has
taken place and that grains of a size equal to or larger than
are present in the disk. In conclusion, the parameters describing the vertical
density distribution are better constrained than those describing the radial
disk structure.Comment: 10 pages, 9 figures, 2 table
- …