880 research outputs found
Effective grain-size of mastery-style online homework levels
Mastery-style online homework is used in a preparatory physics course at the University of Illinois in Champaign-Urbana. Managing student frustration and making homework content achievable is a priority. In a level that historically has been difficult for students to master, content was broken into two smaller mastery levels for half of the students, with the original level given to the other half. Students performed similarly on follow-up assessments and spent similar amounts of time on the homework and assessments, but significantly more students were able to master the content when they were split into two smaller units. Further, students who saw split levels spent significantly less time re-doing problems that they had previously mastered
Toward Mental Effort Measurement Using Electrodermal Activity Features
The ability to monitor mental effort during a task using a wearable sensor may improve productivity for both work and study. The use of the electrodermal activity (EDA) signal for tracking mental effort is an emerging area of research. Through analysis of over 92 h of data collected with the Empatica E4 on a single participant across 91 different activities, we report on the efficacy of using EDA features getting at signal intensity, signal dispersion, and peak intensity for prediction of the participant\u27s self-reported mental effort. We implemented the logistic regression algorithm as an interpretable machine learning approach and found that features related to signal intensity and peak intensity were most useful for the prediction of whether the participant was in a self-reported high mental effort state; increased signal and peak intensity were indicative of high mental effort. When cross-validated by activity moderate predictive efficacy was achieved (AUC = 0.63, F1 = 0.63, precision = 0.64, recall = 0.63) which was significantly stronger than using the model bias alone. Predicting mental effort using physiological data is a complex problem, and our findings add to research from other contexts showing that EDA may be a promising physiological indicator to use for sensor-based self-monitoring of mental effort throughout the day. Integration of other physiological features related to heart rate, respiration, and circulation may be necessary to obtain more accurate predictions
Mastery-style exercises in physics
Mastery learning employs repeated cycles of instructional support and formative assessment to help students achieve desired skills. Instructional objectives are broken into small pieces, and students master those pieces in successive order by performing to a set standard on an assessment for each objective. If a student cannot master an objective, instructional support is provided, and the student is reassessed. Mastery learning has been proved effective in many subject areas, but comparatively little research has been done on applying it in physics instruction. This dissertation details the path taken that culminated in the use of mastery-inspired exercises to teach students basic skills in introductory physics courses.
The path that led to our choice of mastery began with an attempt to provide students with extra practice and formative assessment through weekly practice tests with corresponding solutions, with the goal of helping them better prepare for summative exams in an introductory physics course. No effect was seen, and participation was very low. Investigating how students learn from solutions revealed that they are poor evaluators of their understanding of provided solutions and struggle to retain the skills taught in those solutions. In a follow-up clinical experiment that provided students with solutions, required them to recall the solutions from memory, and re-presented the solutions for restudy, students showed strong retention as well as the ability to transfer information from the solutions to new situations. These results inspired the formal use of mastery learning as an instructional paradigm due to its requirement that students repeatedly recall information from solutions and apply it to new situations.
Mastery-style exercises were first created and tested in clinical trials, followed by two in-course implementations. In the clinical trials, students completed a set of questions on a particular skill, and if they failed to master that skill, they were given support in the form of narrated animated solution videos followed by a new version of the question set. On mastering a skill, students moved on to the next skill level. Students mastered all provided skill levels and then took a post-test. Those clinical trials demonstrated that students can use provided solutions to quickly progress through successive levels of mastery exercises and that mastery-style exercises had a larger impact on the post-test than traditional multi-try immediate feedback homework exercises. Following these strong results, mastery-style exercises were implemented over an entire semester in an introductory course, replacing the existing homework. Participation was much poorer than in the clinical experiments due to frustration with the difficulty of the provided exercises. As a result the implementation had a comparatively small impact on student performance. Frustrated students circumvented the system by ignoring provided solutions and skipping assessments, choosing instead to cycle through the provided versions until they could reattempt an already seen version of an assessment. A follow-up implementation covering a single week had a larger impact on a quiz, yet students were still frustrated with the exercises and displayed behaviors similar to those seen in the semester-long implementation.
Moving forward, frustration must be overcome to return participation to levels seen in the clinical trials. A preliminary development mode is suggested to ensure proper calibration of difficulty to student skills. Other changes involving how the mechanics of the system work as well as how its benefits are communicated to students are also suggested. If frustration is overcome and participation increases, the incredible potential of mastery-inspired exercises can be realized. Mastery is a powerful addition to physics instruction
The instructor presence effect and its moderators in instructional video: a series of meta-analyses
Researchers disagree on the extent to which social cues in instructional videos influence learning and learning-relevant outcomes and processes. The instructor presence effect states that visible instructors in instructional videos lead to increased social presence and higher scores in subjective ratings like motivation, social presence, or affect, but do not improve learning outcomes. In contrast, the Cognitive-Affective-Social Theory of Learning in digital Environments outlines how social cues not only enhance social, emotional, and motivational processes, but they also potentially promote learning outcomes. We conducted a series of meta-analyses to explore the effects of instructor presence in instructional videos on retention, transfer, social presence, motivation, cognitive load, affect, and visual dwell time. The meta-analyses include 35 studies, which contained 46 pair-wise comparisons and 6339 participants. Results revealed a small, statistically significant positive effect of including a visual instructor on retention outcomes, but no significant effect on transfer performance. A visible instructor also significantly enhanced social presence, affective, and motivational ratings. Furthermore, we found that a visible instructor significantly reduced dwell time on relevant visual material but also reduced subjective perception of extraneous cognitive load. Significant moderator effects could be found regarding prior knowledge, the instructional domain as well as the size of the instructor
Draft Genome Sequencing of Three Glutaraldehyde-Tolerant Bacteria from Produced Water from Hydraulic Fracturing
Here, we report the draft genome sequence of three glutaraldehyde-resistant isolates from produced water from hydraulic fracturing operations. The three strains were identified as sp. strain G11, sp. strain G15, and sp. strain G16. The genome sequences of these isolates will provide insights into biocide resistance in hydraulic fracturing operations
Recommended from our members
Multi-ancestry polygenic mechanisms of type 2 diabetes.
Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the underlying biological mechanisms are not fully understood. In this study, we identified multi-ancestry T2D genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-wide association studies representing more than 1.4 million individuals. We implemented soft clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known and novel T2D clusters with distinct cardiometabolic trait associations across two independent biobanks representing diverse genetic ancestral populations (African, n = 21,906; Admixed American, n = 14,410; East Asian, n =2,422; European, n = 90,093; and South Asian, n = 1,262). The 12 genetic clusters were enriched for specific single-cell regulatory regions. Several of the polygenic scores derived from the clusters differed in distribution among ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a body mass index (BMI) of 30 kg m-2 in the European subpopulation and 24.2 (22.9-25.5) kg m-2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg m-2 in the East Asian group. Thus, these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles
Large language models for whole-learner support: opportunities and challenges
In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the “whole learner” by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs
Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2
Abstract
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.
Author Summary
Alphaviruses occur worldwide, causing significant diseases such as encephalitis or arthritis in humans and animals. In addition, some alphaviruses, such as VEEV, pose a biothreat due to their high infectivity and lack of available treatments. To discover small molecule inhibitors with lead development potential, we used a cell-based assay to screen 348,140 compounds for inhibition of a VEEV-induced cytopathic effect. The screen revealed a scaffold with high inhibitory VEEV cellular potency and low cytotoxicity liability. While most previously reported anti-alphavirus compounds inhibit host proteins, evidence supported that this scaffold targeted the VEEV nsP2 protein, and that inhibition was associated with viral replication. Interestingly, compound resistance studies with VEEV mapped activity to the N-terminal domain of nsP2, to which no known function has been attributed. Ultimately, this discovery has delivered a small molecule-derived class of potent VEEV inhibitors whose activity is coupled to the nsP2 viral protein, a novel target with a previously unestablished biological role that is now implicated in viral replication.This research was supported by the following funding sources: NIH R03MH087448-01A1, University of Louisville Internal Research Initiate grant to DHC, USAMRAA W81XWH-10-2-0064 and W81XWH-08-2-0024 to CBJ. Screening was provided by the Southern Research Specialized Screening Center (U54HG005034-0) and chemistry through the University of Kansas Specialized Chemistry Center (U54HG005031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …