33 research outputs found
Accurate image registration using approximate Strang-Fix and an application in super-resolution
Accurate registration is critical to most multi-channel signal processing setups, including image super-resolution. In this paper we use modern sampling theory to propose a new robust registration algorithm that works with arbitrary sampling kernels. The algorithm accurately approximates continuous-time Fourier coefficients from discrete-time samples. These Fourier coefficients can be used to construct an over-complete system, which can be solved to approximate translational motion at around 100-th of a pixel accuracy. The over-completeness of the system provides robustness to noise and other modelling errors. For example we show an image registration result for images that have slightly different backgrounds, due to a viewpoint translation. Our previous registration techniques, based on similar sampling theory, can provide a similar accuracy but not under these more general conditions. Simulation results demonstrate the accuracy and robustness of the approach and demonstrate the potential applications in image super-resolution
Bound and Conquer: Improving Triangulation by Enforcing Consistency
We study the accuracy of triangulation in multi-camera systems with respect to the number of cameras. We show that, under certain conditions, the optimal achievable reconstruction error decays quadratically as more cameras are added to the system. Furthermore, we analyse the error decay-rate of major state-of-the-art algorithms with respect to the number of cameras. To this end, we introduce the notion of consistency for triangulation, and show that consistent reconstruction algorithms achieve the optimal quadratic decay, which is asymptotically faster than some other methods. Finally, we present simulations results supporting our findings. Our simulations have been implemented in MATLAB and the resulting code is available in the supplementary material
SHAPE: Linear-Time Camera Pose Estimation With Quadratic Error-Decay
We propose a novel camera pose estimation or perspective-n-point (PnP) algorithm, based on the idea of consistency regions and half-space intersections. Our algorithm has linear time-complexity and a squared reconstruction error that decreases at least quadratically, as the number of feature point correspondences increase. Inspired by ideas from triangulation and frame quantisation theory, we define consistent reconstruction and then present SHAPE, our proposed consistent pose estimation algorithm. We compare this algorithm with state-of-the-art pose estimation techniques in terms of accuracy and error decay rate. The experimental results verify our hypothesis on the optimal worst-case quadratic decay and demonstrate its promising performance compared to other approaches
On the Accuracy of Point Localisation in a Circular Camera-Array
Although many advances have been made in light-field and camera-array image processing, there is still a lack of thorough analysis of the localisation accuracy of different multi-camera systems. By considering the problem from a frame-quantisation perspective, we are able to quantify the point localisation error of circular camera configurations. Specifically, we obtain closed form expressions bounding the localisation error in terms of the parameters describing the acquisition setup. These theoretical results are independent of the localisation algorithm and thus provide fundamental limits on performance. Furthermore, the new frame-quantisation perspective is general enough to be extended to more complex camera configurations
Shape from bandwidth: the 2-D orthogonal projection case
Could bandwidth—one of the most classic concepts in signal processing—have a new purpose? In this paper, we investigate the feasibility of using bandwidth to infer shape from a single image. As a first analysis, we limit our attention to orthographic projection and assume a 2-D world. We show that, under certain conditions, a single image of a surface, painted with a bandlimited texture, is enough to deduce the surface up to an equivalence class. This equivalence class is unavoidable, since it stems from surface transformations that are invisible to orthographic projections. A proof of concept algorithm is presented and tested with both a simulation and a simple practical experiment
Sampling and Exact Reconstruction of Pulses with Variable Width
Recent sampling results enable the reconstruction of signals composed of streams of fixed-shaped pulses. These results have found applications in topics as varied as channel estimation, biomedical imaging and radio astronomy. However, in many real signals, the pulse shapes vary throughout the signal. In this paper, we show how to sample and perfectly reconstruct Lorentzian pulses with variable width. Since a stream of Lorentzian pulses has a finite number of degrees of freedom per unit time, it belongs to the class of signals with finite rate of innovation (FRI). In the noiseless case, perfect recovery is guaranteed by a set of theorems. In addition, we verify that our algorithm is robust to model-mismatch and noise. This allows us to apply the technique to two practical applications: electrocardiogram (ECG) compression and bidirectional reflectance distribution function (BRDF) sampling. ECG signals are one dimensional, but the BRDF is a higher dimensional signal, which is more naturally expressed in a spherical coordinate system; this motivated us to extend the theory to the 2D and spherical cases. Experiments on real data demonstrate the viability of the proposed model for ECG acquisition and compression, as well as the efficient representation and low-rate sampling of specular BRDFs
Unlabeled Sensing: Reconstruction Algorithm and Theoretical Guarantees
It often happens that we are interested in reconstructing an unknown signal from partial measurements. Also, it is typically assumed that the location (temporal or spatial) of the samples is known and that the only distortion present in the observations is due to additive measurement noise. However, there are some applications where such location information is lost. In this paper, we consider the situation in which the order of noisy samples out of a linear measurement system is missing. Previous work on this topic has only considered the noiseless case and exhaustive search combinatorial algorithms. We propose a much more efficient algorithm based on a geometrical viewpoint of the problem. We also study the uniqueness of the solution under different choices of the sampling matrix and its robustness to noise for the case of two-dimensional signals. Finally we provide simulation results to confirm the theoretical findings of the paper
Sampling at unknown locations: Uniqueness and reconstruction under constraints
Traditional sampling results assume that the sample locations are known. Motivated by simultaneous localization and mapping (SLAM) and structure from motion (SfM), we investigate sampling at unknown locations. Without further constraints, the problem is often hopeless. For example, we recently showed that, for polynomial and bandlimited signals, it is possible to find two signals, arbitrarily far from each other, that fit the measurements. However, we also showed that this can be overcome by adding constraints to the sample positions. In this paper, we show that these constraints lead to a uniform sampling of a composite of functions. Furthermore, the formulation retains the key aspects of the SLAM and SfM problems, whilst providing uniqueness, in many cases. We demonstrate this by studying two simple examples of constrained sampling at unknown locations. In the first, we consider sampling a periodic bandlimited signal composite with an unknown linear function. We derive the sampling requirements for uniqueness and present an algorithm that recovers both the bandlimited signal and the linear warping. Furthermore, we prove that, when the requirements for uniqueness are not met, the cases of multiple solutions have measure zero. For our second example, we consider polynomials sampled such that the sampling positions are constrained by a rational function. We previously proved that, if a specific sampling requirement is met, uniqueness is achieved. In addition, we present an alternate minimization scheme for solving the resulting non-convex optimization problem. Finally, fully reproducible simulation results are provided to support our theoretical analysis
Combining Range and Direction for Improved Localization
Self-localization of nodes in a sensor network is typically achieved using either range or direction measurements; in this paper, we show that a constructive combination of both improves the estimation. We propose two localization algorithms that make use of the differences between the sensors’ coordinates, or edge vectors; these can be calculated from measured distances and angles. Our first method improves the existing edge-multidimensional scaling algorithm (E-MDS) by introducing additional constraints that enforce geometric consistency between the edge vectors. On the other hand, our second method decomposes the edge vectors onto 1-dimensional spaces and introduces the concept of coordinate difference matrices (CDMs) to independently regularize each projection. This solution is optimal when Gaussian noise is added to the edge vectors. We demonstrate in numerical simulations that both algorithms outperform state-of-the-art solutions