897 research outputs found

    Neutrino Physics: Status and Prospects

    Full text link
    This pedagogical overview will cover the current status of neutrino physics from an experimentalist's point of view, focusing primarily on oscillation studies. The evidence for neutrino oscillations will be presented, along with the prospects for further refinement of observations in each of the indicated regions of two-flavor oscillation parameter space. The next steps in oscillation physics will then be covered (under the assumption of three-flavor mixing): the quest for θ13\theta_{13}, mass hierarchy and, eventually, leptonic CP violation. Prospects for non-oscillation aspects of neutrino physics, such as kinematic tests for absolute neutrino mass and double beta decay searches, will also be discussed briefly.Comment: 30 pages, lectures presented at Lake Louise Winter Institute 200

    Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source

    Full text link
    Rates of coherent neutrino-nucleus elastic scattering at a high-intensity stopped-pion neutrino source in various detector materials (relevant for novel low-threshold detectors) are calculated. Sensitivity of a coherent neutrino-nucleus elastic scattering experiment to new physics is also explored.Comment: 9 pages, 14 figures; minor modifications for publicatio

    Coherent Neutrino Scattering in Dark Matter Detectors

    Full text link
    Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 tonâ‹…\cdotyear GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.Comment: 8 pages, 4 figure

    Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering

    Full text link
    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at Δm2∼1\Delta m^2 \sim 1 eV2^2. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.Comment: 10 pages, 7 figure
    • …
    corecore