22,746 research outputs found

    Thermodynamics of a Higher Order Phase Transition: Scaling Exponents and Scaling Laws

    Full text link
    The well known scaling laws relating critical exponents in a second order phase transition have been generalized to the case of an arbitrarily higher order phase transition. In a higher order transition, such as one suggested for the superconducting transition in Ba0.6_{0.6}K0.4_{0.4}BiO3_3 and in Bi2_2Sr2_2CaCu2_2O8_8, there are singularities in higher order derivatives of the free energy. A relation between exponents of different observables has been found, regardless of whether the exponents are classical (mean-field theory, no fluctuations, integer order of a transition) or not (fluctuation effects included). We also comment on the phase transition in a thin film.Comment: 10 pages, no figure

    An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations

    Full text link
    An alternative method for solving the fractional kinetic equations solved earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a, 2004b) is recently given by Saxena and Kalla (2007). This method can also be applied in solving more general fractional kinetic equations than the ones solved by the aforesaid authors. In view of the usefulness and importance of the kinetic equation in certain physical problems governing reaction-diffusion in complex systems and anomalous diffusion, the authors present an alternative simple method for deriving the solution of the generalized forms of the fractional kinetic equations solved by the aforesaid authors and Nonnenmacher and Metzler (1995). The method depends on the use of the Riemann-Liouville fractional calculus operators. It has been shown by the application of Riemann-Liouville fractional integral operator and its interesting properties, that the solution of the given fractional kinetic equation can be obtained in a straight-forward manner. This method does not make use of the Laplace transform.Comment: 7 pages, LaTe

    Atomic scale lattice distortions and domain wall profiles

    Full text link
    We present an atomic scale theory of lattice distortions using strain related variables and their constraint equations. Our approach connects constrained {\it atomic length} scale variations to {\it continuum} elasticity and describes elasticity at several length scales. We apply the approach to a two-dimensional square lattice with a monatomic basis, and find the elastic deformations and hierarchical atomic relaxations in the vicinity of a domain wall between two different homogeneous strain states. We clarify the microscopic origin of gradient terms, some of which are included phenomenologically in Ginzburg-Landau theory, by showing that they are anisotropic.Comment: 6 figure

    Soliton Lattice and Single Soliton Solutions of the Associated Lam\'e and Lam\'e Potentials

    Get PDF
    We obtain the exact nontopological soliton lattice solutions of the Associated Lam\'e equation in different parameter regimes and compute the corresponding energy for each of these solutions. We show that in specific limits these solutions give rise to nontopological (pulse-like) single solitons, as well as to different types of topological (kink-like) single soliton solutions of the Associated Lam\'e equation. Following Manton, we also compute, as an illustration, the asymptotic interaction energy between these soliton solutions in one particular case. Finally, in specific limits, we deduce the soliton lattices, as well as the topological single soliton solutions of the Lam\'e equation, and also the sine-Gordon soliton solution.Comment: 23 pages, 5 figures. Submitted to J. Math. Phy
    corecore