293 research outputs found
Identified markers and evidence.
Biological condition-responsive gene network analysis has attracted considerable research attention because of its ability to identify pathways or gene modules involved in the underlying mechanisms of diseases. Although many condition-specific gene network identification methods have been developed, they are based on partial or incomplete gene regulatory network information, with most studies only considering the differential expression levels or correlations among genes. However, a single gene-based analysis cannot effectively identify the molecular interactions involved in the mechanisms underlying diseases, which reflect perturbations in specific molecular network functions rather than disorders of a single gene. To comprehensively identify differentially regulated gene networks, we propose a novel computational strategy called comprehensive analysis of differential gene regulatory networks (CIdrgn). Our strategy incorporates comprehensive information on the networks between genes, including the expression levels, edge structures and regulatory effects, to measure the dissimilarity among networks. We extended the proposed CIdrgn to cell line characteristic-specific gene network analysis. Monte Carlo simulations showed the effectiveness of CIdrgn for identifying differentially regulated gene networks with different network structures and scales. Moreover, condition-responsive network identification in cell line characteristic-specific gene network analyses was verified. We applied CIdrgn to identify gastric cancer and itsf chemotherapy (capecitabine and oxaliplatin) -responsive network based on the Cancer Dependency Map. The CXC family of chemokines and cadherin gene family networks were identified as gastric cancer-specific gene regulatory networks, which was verified through a literature survey. The networks of the olfactory receptor family with the ASCL1/FOS family were identified as capecitabine- and oxaliplatin sensitive -specific gene networks. We expect that the proposed CIdrgn method will be a useful tool for identifying crucial molecular interactions involved in the specific biological conditions of cancer cell lines, such as the cancer stage or acquired anticancer drug resistance.</div
A flow chart of MASSIVE.
Agent-based simulations and the following-post processing step are performed in parallel by employing a supercomputer. Results are then collected and subjected to interactive data visualization.</p
An agent-based model of cancer evolution.
(A) A flowchart of the simulation. In each time step, a cell divides into two daughter cells with a probability g. In each cell division, each of the two daughter cells acquires k ∼ Pois(m/2) mutations. (B) A growth rule on a one-dimensional lattice. Cell divides while pushing out neighboring cells on a one-dimensional lattice with free-ends. Resources are provided from both the ends and subject to exponential decays with a half-distance parameter d.</p
XELOX-responsive gene regulatory networks.
Biological condition-responsive gene network analysis has attracted considerable research attention because of its ability to identify pathways or gene modules involved in the underlying mechanisms of diseases. Although many condition-specific gene network identification methods have been developed, they are based on partial or incomplete gene regulatory network information, with most studies only considering the differential expression levels or correlations among genes. However, a single gene-based analysis cannot effectively identify the molecular interactions involved in the mechanisms underlying diseases, which reflect perturbations in specific molecular network functions rather than disorders of a single gene. To comprehensively identify differentially regulated gene networks, we propose a novel computational strategy called comprehensive analysis of differential gene regulatory networks (CIdrgn). Our strategy incorporates comprehensive information on the networks between genes, including the expression levels, edge structures and regulatory effects, to measure the dissimilarity among networks. We extended the proposed CIdrgn to cell line characteristic-specific gene network analysis. Monte Carlo simulations showed the effectiveness of CIdrgn for identifying differentially regulated gene networks with different network structures and scales. Moreover, condition-responsive network identification in cell line characteristic-specific gene network analyses was verified. We applied CIdrgn to identify gastric cancer and itsf chemotherapy (capecitabine and oxaliplatin) -responsive network based on the Cancer Dependency Map. The CXC family of chemokines and cadherin gene family networks were identified as gastric cancer-specific gene regulatory networks, which was verified through a literature survey. The networks of the olfactory receptor family with the ASCL1/FOS family were identified as capecitabine- and oxaliplatin sensitive -specific gene networks. We expect that the proposed CIdrgn method will be a useful tool for identifying crucial molecular interactions involved in the specific biological conditions of cancer cell lines, such as the cancer stage or acquired anticancer drug resistance.</div
Gene Ontology (GO) pathway analysis of XELOX-sensitive (red) and XELOX-resistant (blue) specific markers.
Gene Ontology (GO) pathway analysis of XELOX-sensitive (red) and XELOX-resistant (blue) specific markers.</p
Simulation results.
Biological condition-responsive gene network analysis has attracted considerable research attention because of its ability to identify pathways or gene modules involved in the underlying mechanisms of diseases. Although many condition-specific gene network identification methods have been developed, they are based on partial or incomplete gene regulatory network information, with most studies only considering the differential expression levels or correlations among genes. However, a single gene-based analysis cannot effectively identify the molecular interactions involved in the mechanisms underlying diseases, which reflect perturbations in specific molecular network functions rather than disorders of a single gene. To comprehensively identify differentially regulated gene networks, we propose a novel computational strategy called comprehensive analysis of differential gene regulatory networks (CIdrgn). Our strategy incorporates comprehensive information on the networks between genes, including the expression levels, edge structures and regulatory effects, to measure the dissimilarity among networks. We extended the proposed CIdrgn to cell line characteristic-specific gene network analysis. Monte Carlo simulations showed the effectiveness of CIdrgn for identifying differentially regulated gene networks with different network structures and scales. Moreover, condition-responsive network identification in cell line characteristic-specific gene network analyses was verified. We applied CIdrgn to identify gastric cancer and itsf chemotherapy (capecitabine and oxaliplatin) -responsive network based on the Cancer Dependency Map. The CXC family of chemokines and cadherin gene family networks were identified as gastric cancer-specific gene regulatory networks, which was verified through a literature survey. The networks of the olfactory receptor family with the ASCL1/FOS family were identified as capecitabine- and oxaliplatin sensitive -specific gene networks. We expect that the proposed CIdrgn method will be a useful tool for identifying crucial molecular interactions involved in the specific biological conditions of cancer cell lines, such as the cancer stage or acquired anticancer drug resistance.</div
Simulation results: Cell line characteristic analysis.
Simulation results: Cell line characteristic analysis.</p
Focused view mode of the MASSIVE viewer.
The page of the focused view mode consists of control, heat map and simulation instance panels. The control panel specifies visualization settings, the heat map panels presents heat maps for a selected statistic, and the simulation instance panel presents 5 mutation profiles from the parameter set specified by the position of the mouse cursor on the heat maps.</p
- …