960 research outputs found

    Bayesian model selection for testing the no-hair theorem with black hole ringdowns

    Full text link
    General relativity predicts that a black hole that results from the merger of two compact stars (either black holes or neutron stars) is initially highly deformed but soon settles down to a quiescent state by emitting a superposition of quasi-normal modes (QNMs). The QNMs are damped sinusoids with characteristic frequencies and decay times that depend only on the mass and spin of the black hole and no other parameter - a statement of the no-hair theorem. In this paper we have examined the extent to which QNMs could be used to test the no-hair theorem with future ground- and space-based gravitational-wave detectors. We model departures from general relativity (GR) by introducing extra parameters which change the mode frequencies or decay times from their general relativistic values. With the aid of numerical simulations and Bayesian model selection, we assess the extent to which the presence of such a parameter could be inferred, and its value estimated. We find that it is harder to decipher the departure of decay times from their GR value than it is with the mode frequencies. Einstein Telescope (ET, a third generation ground-based detector) could detect departures of <1% in the frequency of the dominant QNM mode of a 500 Msun black hole, out to a maximum range of 4 Gpc. In contrast, the New Gravitational Observatory (NGO, an ESA space mission to detect gravitational waves) can detect departures of ~ 0.1% in a 10^8 Msun black hole to a luminosity distance of 30 Gpc (z = 3.5).Comment: 9 pages, 5 figure

    The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries

    Get PDF
    We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, MobsM_{\mathrm{obs}}, from 50M⊙50\mathrm{M}_{\odot} to 500M⊙500\mathrm{M}_{\odot} and mass ratio 1\mbox{--}4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2)(2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, Mobs≲50M⊙M_{\mathrm{obs}} \lesssim 50 \mathrm{M}_{\odot}, the observed chirp mass Mobs=Mobs η3/5\mathcal{M}_{\rm obs} = M_{\mathrm{obs}}\,\eta^{3/5} (η\eta being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass MobsM_{\mathrm{obs}} has better relative precision than Mobs\mathcal{M}_{\rm obs}. Indeed, at high MobsM_{\mathrm{obs}} (≥300M⊙\geq 300 \mathrm{M}_{\odot}), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on MobsM_{\mathrm{obs}}. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 1212, uncertainties in MobsM_{\mathrm{obs}} can be as large as \sim 20 \mbox{--}25\% while uncertainties in Mobs\mathcal{M}_{\rm obs} are \sim 50 \mbox{--}60\% in binaries with unequal masses (those numbers become ∼17%\sim 17\% versus ∼22%\sim22\% in more symmetric binaries). Although large, those uncertainties will establish the existence of IMBHs. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window. (abridged)Comment: 17 pages, 9 figures, 2 tables; updated to reflect published versio

    Searching for binary coalescences with inspiral templates: Detection and parameter estimation

    Get PDF
    There has been remarkable progress in numerical relativity recently. This has led to the generation of gravitational waveform signals covering what has been traditionally termed the three phases of the coalescence of a compact binary - the inspiral, merger and ringdown. In this paper, we examine the usefulness of inspiral only templates for both detection and parameter estimation of the full coalescence waveforms generated by numerical relativity simulations. To this end, we deploy as search templates waveforms based on the effective one-body waveforms terminated at the light-ring as well as standard post-Newtonian waveforms. We find that both of these are good for detection of signals. Parameter estimation is good at low masses, but degrades as the mass of the binary system increases.Comment: 14 pages, submitted to proceedings of the NRDA08 meeting, Syracuse, Aug. 11-14, 200

    Templates for stellar mass black holes falling into supermassive black holes

    Get PDF
    The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matching techniques, such as Wiener filtering, is likely to be computationally an impossible exercise. In this article we propose using a mixture of optimal and non-optimal methods to create a search hierarchy to ease the computational burden. Furthermore, by employing the method of principal components (also known as singular value decomposition) we explicitly demonstrate that the effective dimensionality of the search parameter space of smirches is likely to be just three or four, much smaller than what has hitherto been thought to be about nine or ten. This result, based on a limited study of the parameter space, should be confirmed by a more exhaustive study over the parameter space as well as Monte-Carlo simulations to test the predictions made in this paper.Comment: 12 pages, 4 Tables, 4th LISA symposium, submitted to CQ

    Improved filters for gravitational waves from inspiraling compact binaries

    Get PDF
    The order of the post-Newtonian expansion needed to extract in a reliable and accurate manner the fully general relativistic gravitational wave signal from inspiraling compact binaries is explored. A class of approximate wave forms, called P-approximants, is constructed based on the following two inputs: (a) the introduction of two new energy-type and flux-type functions e(v) and f(v), respectively, (b) the systematic use of the Padé approximation for constructing successive approximants of e(v) and f(v). The new P-approximants are not only more effectual (larger overlaps) and more faithful (smaller biases) than the standard Taylor approximants, but also converge faster and monotonically. The presently available (v/c)^5-accurate post-Newtonian results can be used to construct P-approximate wave forms that provide overlaps with the exact wave form larger than 96.5%, implying that more than 90% of potential events can be detected with the aid of P-approximants as opposed to a mere 10–15 % that would be detectable using standard post-Newtonian approximants

    The gravitational wave symphony of the Universe

    Get PDF
    The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly non-linear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations
    • …
    corecore