27 research outputs found

    Modelowanie Fizyczne Przepływu Stali W Urządzeniu Rh

    Get PDF
    The efficiency of vacuum steel degassing using RH methods depends on many factors. One of the most important are hydrodynamic processes occurring in the ladle and vacuum chamber. It is always hard and expensive to determine the flow character and the way of steel mixing in industrial unit; thus in this case, methods of physical modelling are applied. The article presents the results of research carried out on the water physical model of RH apparatus concerning the influence of the flux value of inert gas introduced through the suck legs on hydrodynamic conditions of the process. Results of the research have visualization character and are presented graphically as a RTD curves. The main aim of such research is to optimize the industrial vacuum steel degassing process by means of RH method.Skuteczność procesu próżniowego odgazowania stali metodą RH zależy od wielu czynników. Jednym z ważniejszych są procesy hydrodynamiczne zachodzące w kadzi stalowniczej i komorze próżniowej. Określenie sposobu przepływu i mieszania się stali w urządzeniu przemysłowym jest bardzo trudne i kosztowne. W związku z tym do tego celu wykorzystuje się m. in. metody modelowania fizycznego. W artykule przedstawiono rezultaty badań przeprowadzonych na wodnym modelu fizycznym urządzenia RH, dotyczące wpływu wartości strumienia gazu obojętnego wprowadzanego przez dysze króćca ssącego na warunki hydrodynamiczne procesu. Wyniki badań mają charakter wizualizacji oraz przedstawione zostały w postaci krzywych retencji RTD. Cel tego typu badań związany jest z optymalizacją przemysłowego procesu próżniowego odgazowania stali metodą RH.Web of Science6031863185

    Physical modelling of degassing process by blowing of inert gas

    Get PDF
    This paper deals with the possibilities of using physical modelling to study the degassing of metal melt during its treatment in the refining ladle. The method of inert gas blowing, so-called refining gas, presents the most common operational technology for the elimination of impurities from molten metal, e.g. for decreasing or removing the hydrogen content from liquid aluminium. This refining process presents the system of gas-liquid and its efficiency depends on the creation of fine bubbles with a high interphase surface, uniform distribution, long period of its effect in the melt, and mostly on the uniform arrangement of bubbles into the whole volume of the refining ladle. Physical modelling represents the basic method of modelling and it makes it possible to obtain information about the course of refining processes. On the basis of obtained results, it is possible to predict the behaviour of the real system during different changes in the process. The experimental part focuses on the evaluation of methodical laboratory experiments aimed at the proposal and testing of the developed methods of degassing during physical modelling. The results obtained on the basis of laboratory experiments realized on the specific physical model were discussed.Web of Science63299298

    Numerical modelling of metal melt refining process in ladle with rotating impeller and breakwaters

    Get PDF
    The paper describes research and development of aluminium melt refining technology in a ladle with rotating impeller and breakwaters using numerical modelling of a finite volume/element method. The theoretical aspects of refining technology are outlined. The design of the numerical model is described and discussed. The differences between real process conditions and numerical model limitations are mentioned. Based on the hypothesis and the results of numerical modelling, the most appropriate setting of the numerical model is recommended. Also, the possibilities of monitoring of degassing are explained. The results of numerical modelling allow to improve the refining technology of metal melts and to control the final quality under different boundary conditions, such as rotating speed, shape and position of rotating impeller, breakwaters and intensity of inert gas blowing through the impeller.Web of Science64266465

    Research and development of the solidification of slab ingots from special tool steels

    Get PDF
    The paper describes the research and development of casting and solidification of slab ingots from special tool steels by means of numerical modelling using the finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, problems with determining the thermophysical properties of materials and heat transfer between the individual parts of the casting system are discussed. Based on the type of grade of tool steel, the risk of final porosity is predicted. The results allowed to improve the production technology of slab ingots, and also to verify the ratio, the chamfer and the external/internal shape of the wall of the new designed slab ingots.Web of Science6231458145

    Physical modelling of tundish slag entrainment under various technological conditions

    Get PDF
    This paper deals with the issue of physical modelling of vortexes creation and tundish slag entrainment over the mouth of the nozzle into the individual casting strands. Proper physical model is equivalent to the operational continuous casting machine No. 2 in TRINECKE ZELEZARN, a.s. Physical modelling methodology and simulated operational conditions are shortly described. Physical modelling was used for the evaluation of current conditions of steel casting at the application of different impact pads in the tundish. Further, laboratory measurement on the physical model aiming the determination of exact critical periods of vortexes creation and study of the slag entrainment as a consequence of changes in surface level during the tundish refilling to standard level were realised. The obtained results were analysed and discussed.Web of Science6231471146

    Study of solidification of continuously cast steel round billets using numerical modelling

    Get PDF
    The paper is dedicated to the verification of solidification of continuously cast round steel billets using numerical modelling based on the finite element method. The aim of numerical modelling is to optimize the production of continuously cast steel billets of round format. The paper describes the pre-processing, processing and post-processing phases of numerical modelling. Also, the problems with determination of the thermodynamic properties of materials and the heat transfer between the individual parts of the casting system, including the definition of the heat losses along the casting strand in the primary and secondary cooling, were discussed. The first results of numerical simulation show the so-called thermal steady state of continuous casting. The temperature field, the metallurgical length and the thickness of the shell at the end of the mould were predicted. The further research will be concentrated on the prediction the risk of the cracks and the porosity based on the different boundary conditions.Web of Science62122622

    Study of tundish slag entrainment using physical modelling

    Get PDF
    This paper deals with the possibilities of using physical modelling to study the slag entrainment in the tundish. A level of steel in the tundish is changing during sequential continuous casting. The most significant decrease in the steel level occurs when replacing ladles. It is generally known that if the height of steel level in the tundish drops below a certain critical level, it may generate vortexes over the nozzles and as a consequence entrainment of tundish slag into individual casting strands can occur. Thus, it is necessary to identify the critical level of steel for specific operational conditions. In this paper, the development of physical modelling methodology is described as well as physical model corresponding to operational continuous casting machine No. 2 in Třinecké železárny, a.s. The obtained results are discussed.Web of Science61126025

    Computational fluid dynamics (CFD) analysis of medium flow and removal of inclusions in a two-strand tundish

    Get PDF
    The article presents the results of the CFD simulation of the method of medium flow and mixing, as well as the movement and removal of solid particles in the model of two-strand tundish as a result of installed internal arrange ment. Two variants including turbulence inhibitor and impact pad with a ball cutting area were modeled for the tests. CFD simulations are a continuation of previous tests with the use of the physical water model of the continu ous steel casting (CSC) deviceWeb of Science623-433833

    Hydrometallurgical recycling process for mobile phone printed circuit boards using ozone

    Get PDF
    Printed circuit boards (PCBs) can be an important source of non-ferrous metals (Al, Sn, Zn, and Ni) and precious metals (Au, Ag, Cu, and Pd). With the continuous increase in demand for metals due to the depletion of ores, recycling of this waste is becoming an attractive alternative. The printed circuits also contain hazardous metals, such as Pb, Hg, As, and Cd. Due to the huge increase in the amount of e-waste, the processing of printed circuit boards for metal recovery and proper handling of hazardous substances has a positive effect on the environment. Pyrometallurgical and hydrometallurgical methods are used for the treatment of this waste. Various oxidizing agents are used in the hydrometallurgical processes, including ozone. PCBs from mobile phones were assessed for the recovery of Cu, Sn, and precious metals. The ground and sieved materials were leached in nitric acid, hydrochloric acid, and sulfuric acid at various process parameters, such as leaching time, leaching agent, and temperature. It was found that the best result was obtained using hydrochloric acid with the addition of ozone at 353 K for a period of 4 h to obtain 68.45 g/dm(3) of copper. Preliminary results of electrolysis and cementation are also presented.Web of Science115art. no. 82

    Physical Modeling of the Impeller Construction Impact on the Aluminum Refining Process

    No full text
    Obtaining high-quality aluminum is associated with the use of an effective method of refining, which is argon-purging, in which gas bubbles are introduced into the liquid metal by means of rotary impellers. Various rotary impellers are used in the industry; however, if a newly designed impeller is constructed, it should be tested prior to industrial use. For this purpose, physical modeling is used, which enables the investigation of the phenomena occurring during refining and the selection of optimal processing parameters without costly research carried out in the industry. The newly designed rotary impeller was tested on the physical model of a URO-200 batch reactor. The flow rate of refining gas was: 10, 15 and 20 dm3·min−1, whereas rotary impeller speed was 300, 400 and 500 rpm. The research consists of a visualization test showing the schemes of the gas bubbles’ dispersion level in the liquid metal and experiments for removing oxygen from water, which is an analogue of removing hydrogen from aluminum
    corecore