58,022 research outputs found
Non-equilibrium tube length fluctuations of entangled polymers
We investigate the nonequilibrium tube length fluctuations during the
relaxation of an initially stretched, entangled polymer chain. The
time-dependent variance of the tube length follows in the early-time
regime a simple universal power law originating in the
diffusive motion of the polymer segments. The amplitude is calculated
analytically both from standard reptation theory and from an exactly solvable
lattice gas model for reptation and its dependence on the initial and
equilibrium tube length respectively is discussed. The non-universality
suggests the measurement of the fluctuations (e.g. using flourescence
microscopy) as a test for reptation models.Comment: 12 pages, 2 figures. Minor typos correcte
Asteroseismology and Magnetic Cycles
Small cyclic variations in the frequencies of acoustic modes are expected to
be a common phenomenon in solar-like pulsators, as a result of stellar magnetic
activity cycles. The frequency variations observed throughout the solar and
stellar cycles contain information about structural changes that take place
inside the stars as well as about variations in magnetic field structure and
intensity. The task of inferring and disentangling that information is,
however, not a trivial one. In the sun and solar-like pulsators, the direct
effect of the magnetic field on the oscillations might be significantly
important in regions of strong magnetic field (such as solar- / stellar-spots),
where the Lorentz force can be comparable to the gas-pressure gradient. Our aim
is to determine the sun- / stellar-spots effect on the oscillation frequencies
and attempt to understand if this effect contributes strongly to the frequency
changes observed along the magnetic cycle. The total contribution of the spots
to the frequency shifts results from a combination of direct and indirect
effects of the magnetic field on the oscillations. In this first work we
considered only the indirect effect associated with changes in the
stratification within the starspot. Based on the solution of the wave equation
and the variational principle we estimated the impact of these stratification
changes on the oscillation frequencies of global modes in the sun and found
that the induced frequency shifts are about two orders of magnitude smaller
than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and
Asteroseismology, to be published on 3 December 2012 at Astronomische
Nachrichten 333, No. 10, 1032-103
Evidence for an inflationary phase transition from the LSS and CMB anisotropy data
In the light of the recent Boomerang and Maxima observations of the CMB which
show an anomalously low second acoustic peak, we reexamine the prediction by
Adams et al (1997) that this would be the consequence of a 'step' in the
primordial spectrum induced by a spontaneous symmetry breaking phase transition
during primordial inflation. We demonstrate that a deviation from
scale-invariance around ~Mpc can simultaneously explain both
the feature identified earlier in the APM galaxy power spectrum as well the
recent CMB anisotropy data, with a baryon density consistent with the BBN
value. Such a break also allows a good fit to the data on cluster abundances
even for a critical density matter-dominated universe with zero cosmological
constant.Comment: 4 pages with 3 figures, LaTeX file using espcrc2.sty to appear on the
Proceedings of "Euroconference on Frontiers in Particle Astrophysics and
Cosmology",Sant Feliu de Guixols,Spain,30th September-5th October of 200
From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems
Decaying vacuum cosmological models evolving smoothly between two extreme
(very early and late time) de Sitter phases are capable to solve or at least to
alleviate some cosmological puzzles, among them: (i) the singularity, (ii)
horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem.
Our basic aim here is to discuss how the coincidence problem based on a large
class of running vacuum cosmologies evolving from de Sitter to de Sitter can
also be mollified. It is also argued that even the cosmological constant
problem become less severe provided that the characteristic scales of the two
limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new
references adde
Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction
We describe an apparatus designed to make non-demolition measurements on a
Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This
apparatus contains, as well as the bosonic gas and the trap, an optical cavity.
We show how the interaction between the light and the atoms, under appropriate
conditions, can allow for a weakly disturbing yet highly precise measurement of
the population imbalance between the two wells and its variance. We show that
the setting is well suited for the implementation of quantum-limited estimation
strategies for the inference of the key parameters defining the evolution of
the atomic system and based on measurements performed on the cavity field. This
would enable {\it de facto} Hamiltonian diagnosis via a highly controllable
quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.
A Note on Segre Types of Second Order Symmetric Tensors in 5-D Brane-world Cosmology
Recent developments in string theory suggest that there might exist extra
spatial dimensions, which are not small nor compact. The framework of most
brane cosmological models is that in which the matter fields are confined on a
brane-world embedded in five dimensions (the bulk). Motivated by this we
reexamine the classification of the second order symmetric tensors in 5--D, and
prove two theorems which collect together some basic results on the algebraic
structure of these tensors in 5-dimensional space-times. We also briefly
indicate how one can obtain, by induction, the classification of symmetric
two-tensors (and the corresponding canonical forms) on n-dimensional spaces
from the classification on 4-dimensional spaces. This is important in the
context of 11--D supergravity and 10--D superstrings.Comment: 12 pages, to appear in Mod. Phys. Lett. A (2003) in the present for
Segre Types of Symmetric Two-tensors in n-Dimensional Spacetimes
Three propositions about Jordan matrices are proved and applied to
algebraically classify the Ricci tensor in n-dimensional Kaluza-Klein-type
spacetimes. We show that the possible Segre types are [1,1...1], [21...1],
[31\ldots 1], [z\bar{z}1...1] and degeneracies thereof. A set of canonical
forms for the Segre types is obtained in terms of semi-null bases of vectors.Comment: 14 pages, LaTeX, replaced due to a LaTex erro
- âŠ