1,268 research outputs found
Numerical investigation of the effects of icing on fixed and rotary wing aircraft
A 2-D multi-element airfoil code was modified to study the effects of icing on the aerodynamic characteristics of high lift systems. In each zone of the flow field, the solver numerically integrates the 2-D compressible Navier-Stokes equations using a time marching scheme. The surface pressure distribution is generated over a GAW 130 airfoil/flap combination for a flap setting of 25 degrees, and an angle of attack equal to 5 degrees, at a freestream Mach number equal to 0.3. A series of calculations were performed to determine the effects of small scale ice build up on the high lift characteristics of this arifoil/flap combination. The appendix summarizes this progress. Joint studies on correlation of a 3-D iced wing code with experimental data reviewed new measured laser Doppler velocimeter data in the separated region behind the leading edge ice shape. A version of the iced wing analysis using the Roe scheme was developed to evaluate the poor correlation between the computed and measured velocities in the separated region. Work on the extension of the wing-alone analysis to wing body configuration began with modifications to the 3-D iced wing analyses to accept externally generated grids and multi-block grids
Development of iterative techniques for the solution of unsteady compressible viscous flows
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines
Simulation of unsteady rotational flow over propfan configuration
During the past decade, aircraft engine manufacturers and scientists at NASA have worked on extending the high propulsive efficiency of a classical propeller to higher cruise Mach numbers. The resulting configurations use highly swept twisted and very thin blades to delay the drag divergence Mach number. Unfortunately, these blades are also susceptible to aeroelastic instabilities. This was observed for some advanced propeller configurations in wind tunnel tests at NASA Lewis Research Center, where the blades fluttered at cruise speeds. To address this problem and to understand the flow phenomena and the solid fluid interaction involved, a research effort was initiated at Georgia Institute of Technology in 1986, under the support of the Structural Dynamics Branch of the NASA Lewis Research Center. The objectives of this study are: (1) the development of solution procedures and computer codes capable of predicting the aeroelastic characteristics of modern single and counter-rotation propellers; and (2) the use of these solution procedures to understand physical phenomena such as stall flutter, transonic flutter, and divergence
Studies of unsteady viscous flows using a two-equation model of turbulence
A two equation model of turbulence, based on the turbulent kinetic energy and energy dissipation, suitable for prediction of unsteady viscous flows, was developed. Also, the performance of the two equation model was compared with simpler algebraic models such as the Baldwin-Lomax two layer eddy viscosity model, and a model by Johnson and King which accounts for upstream history of the turbulent kinetic energy. A brief discussion of this study is given
Evaluation of three turbulence models for the prediction of steady and unsteady airloads
Two dimensional quasi-three dimensional Navier-Stokes solvers were used to predict the static and dynamic airload characteristics of airfoils. The following three turbulence models were used: the Baldwin-Lomax algebraic model, the Johnson-King ODE model for maximum turbulent shear stress, and a two equation k-e model with law-of-the-wall boundary conditions. It was found that in attached flow the three models have good agreement with experimental data. In unsteady separated flows, these models give only a fair correlation with experimental data
Analysis of viscous transonic flow over airfoil sections
A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data
Application of Navier-Stokes analysis to stall flutter
A solution procedure was developed to investigate the two-dimensional, one- or two-dimensional flutter characteristics of arbitrary airfoils. This procedure requires a simultaneous integration in time of the solid and fluid equations of motion. The fluid equations of motion are the unsteady compressible Navier-Stokes equations, solved in a body-fitted moving coordinate system using an approximate factorization scheme. The solid equations of motion are integrated in time using an Euler implicit scheme. Flutter is said to occur if small disturbances imposed on the airfoil attitude lead to divergent oscillatory motions at subsequent times. The flutter characteristics of airfoils in subsonic speed at high angles of attack and airfoils in high subsonic and transonic speeds at low angles of attack are investigated. The stall flutter characteristics are also predicted using the same procedure
Numerical study of the effects of icing on viscous flow over wings
The progress made during the period 1 Jan. - 30 Jun. 1993 on the numerical study of the effects of icing on viscous flow over wings is summarized. The tasks performed were development of 3-D boundary layer methods for accurate estimates of the velocity field and surface heat transfer rates in the vicinity of the leading edge ice shape; studies of the effects of icing on 3-D highlift system performance; and continued improvement and validation of the 3-D Navier-Stokes solver. Results are discussed
Application of a Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings
A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given
Blade-mounted trailing edge flap control for BVI noise reduction
Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained
- …