448 research outputs found

    Compression-aware Training of Deep Networks

    Get PDF
    In recent years, great progress has been made in a variety of application domains thanks to the development of increasingly deeper neural networks. Unfortunately, the huge number of units of these networks makes them expensive both computationally and memory-wise. To overcome this, exploiting the fact that deep networks are over-parametrized, several compression strategies have been proposed. These methods, however, typically start from a network that has been trained in a standard manner, without considering such a future compression. In this paper, we propose to explicitly account for compression in the training process. To this end, we introduce a regularizer that encourages the parameter matrix of each layer to have low rank during training. We show that accounting for compression during training allows us to learn much more compact, yet at least as effective, models than state-of-the-art compression techniques.Comment: Accepted at NIPS 201

    Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

    Get PDF
    State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifolds, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods

    Residual Parameter Transfer for Deep Domain Adaptation

    Get PDF
    The goal of Deep Domain Adaptation is to make it possible to use Deep Nets trained in one domain where there is enough annotated training data in another where there is little or none. Most current approaches have focused on learning feature representations that are invariant to the changes that occur when going from one domain to the other, which means using the same network parameters in both domains. While some recent algorithms explicitly model the changes by adapting the network parameters, they either severely restrict the possible domain changes, or significantly increase the number of model parameters. By contrast, we introduce a network architecture that includes auxiliary residual networks, which we train to predict the parameters in the domain with little annotated data from those in the other one. This architecture enables us to flexibly preserve the similarities between domains where they exist and model the differences when necessary. We demonstrate that our approach yields higher accuracy than state-of-the-art methods without undue complexity
    • …
    corecore