338 research outputs found

    TLR2 plays a role in the activation of human resident renal stem/progenitor cells.

    Get PDF

    Why stem/progenitor cells lose their regenerative potential

    Get PDF
    Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their selfrenewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various agingassociated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases

    Role of toll-like receptors in actuating stem/progenitor cell repair mechanisms: Different functions in different cells

    Get PDF
    Toll-like receptors (TLRs) represent one of the bridges that regulate the cross-talk between the innate and adaptive immune systems. TLRs interact with molecules shared and preserved by the pathogens of origin but also with endogenous molecules (damage/danger-associated molecular patterns (DAMPs)) that derive from injured tissues. This is probably why TLRs have been found to be expressed on several kinds of stem/progenitor cells (SCs). In these cells, the role of TLRs in the regulation of the basal motility, proliferation, differentiation processes, self-renewal, and immunomodulation has been demonstrated. In this review, we analyze the many different functions that the TLRs assume in SCs, pointing out that they can have different effects, depending on the background and on the kind of ligands that they recognize. Moreover, we discuss the TLR involvement in the response of SC to specific tissue damage and in the reparative processes, as well as how the identification of molecules mediating the differential function of TLR signaling could be decisive for the development of new therapeutic strategies. Considering the available studies on TLRs in SCs, here we address the importance of TLRs in sensing an injury by stem/progenitor cells and in determining their behavior and reparative activity, which is dependent on the conditions. Therefore, it could be conceivable that SCs employed in therapy could be potentially exposed to TLR ligands, which might modulate their therapeutic potential in vivo. In this context, to modulate SC proliferation, survival, migration, and differentiation in the pathological environment, we need to better understand the mechanisms of action of TLRs on SCs and learn how to control these receptors and their downstream pathways in a precise way. In this manner, in the future, cell therapy could be improved and made safer

    Uridine and pyruvate protect T cells’ proliferative capacity from mitochondrial toxic antibiotics: a clinical pilot study

    Get PDF
    Antibiotics that inhibit bacterial protein or nucleic acid synthesis and function can exert an off-target action on mitochondria (mitotoxic antibiotics), making actively dividing mammalian cells dependent on uridine and pyruvate supplementation. Based on this rationale, we carried out, for the first time, a randomized pilot study in 55 patients with asymptomatic bacteriuria or positive sperm culture, each treated with a single mitotoxic antibiotic with or without oral supplementation of uridine + pyruvate (Uripyr, Mitobiotix, Italy). The in vivo and ex vivo data show a a 3.4-fold higher value in the differential (before and after the antibiotic treatment) lymphocytes count and a 3.7-fold increase in the percentage of dividing T cells, respectively, in the Uripyr vs the control group. Our findings lay the groundwork to enhance the synergy between antibiotics and the immune system in order to optimize the administration protocols and widen the application potentials of antibiotic therapies as well as to re-evaluate old “forgotten” molecules to fight bacterial infections in the antibiotics resistance era

    Spermine metabolism and anticancer therapy

    Get PDF
    Abstract: The natural polyamines (PA), putrescine (PUT), spermidine (SPD) and spermine (SPM) are ubiquitous constituents of eukaryotic cells. The increase of PA in malignant and proliferating cells attracted the interest of scientists during last decades, addressing PA depletion as a new strategy to inhibit cell growth. Selective enzyme inhibitors were developed for decreasing PA metabolism and to act as chemotherapeutic anticancer agents. Indeed, the complexity of the PA homoeostasis overcomes the PA perturbation by a single enzyme to take effect therapeutically. Recently, an increasing interest has been posed on spermine-oxidase (SMO), the only catabolic enzyme able to specifically oxidise SPM. Interestingly, the absence of SPM is compatible with life, but its accumulation and degradation is lethal. Augmented SMO activity provokes an oxidative stress rendering cells prone to die, and appears to be important in the cell differentiation pathway. Extra-cellular SPM is cytotoxic, but its analogues are capable of inhibiting cell growth at low concentrations, most likely by intracellular SPM depletion. These pivotal roles seem to evoke the biological processes of stress response, wherein balance is mandatory to live or to die. Thus, altering SPM metabolism could allow a multi-tasking therapeutic strategy, addressed not only to inhibit PA metabolism. Several tetramines are presently in early phases (I and II) of clinical trials, and it will be a matter of a few more years to understand whether SPM-related therapeutic approaches would be of benefit for composite treatment protocols of cancer

    Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography

    Get PDF
    Interhemispheric interactions in stroke patients are frequently characterized by abnormalities, in terms of balance and inhibition. Previous results showed an impressive variability, mostly given to the instability of motor-evoked potentials when evoked from the affected hemisphere. We aim to find reliable interhemispheric measures in stroke patients with a not-evocable motor-evoked potential from the affected hemisphere, by combining transcranial magnetic stimulation (TMS) and electroencephalography. Ninteen stroke patients (seven females; 61.26 ± 9.8 years) were studied for 6 months after a first-ever stroke in the middle cerebral artery territory. Patients underwent four evaluations: clinical, cortical, corticospinal, and structural. To test the reliability of our measures, the evaluations were repeated after 3 weeks. To test the sensitivity, 14 age-matched healthy controls were compared to stroke patients. In stroke patients, stimulation of the affected hemisphere did not result in any inhibition onto the unaffected. The stimulation of the unaffected hemisphere revealed a preservation of the inhibition mechanism onto the affected. This resulted in a remarkable interhemispheric imbalance, whereas this mechanism was steadily symmetric in healthy controls. This result was stable when cortical evaluation was repeated after 3 weeks. Importantly, patients with a better recovery of the affected hand strength were the ones with a more stable interhemispheric balance. Finally, we found an association between microstructural integrity of callosal fibers, suppression of interhemispheric TMS-evoked activity and interhemispheric connectivity. We provide direct and sensitive cortical measures of interhemispheric imbalance in stroke patients. These measures offer a reliable means of distinguishing healthy and pathological interhemispheric dynamics
    • …
    corecore