526 research outputs found
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds
: Understanding the genomic features of livestock is essential for successful breeding programs and conservation. This information is scarce for local goat breeds in Egypt. In the current study, genomic regions with selection signatures were identified as well as runs of homozygosity (ROH), genomic inbreeding coefficients (FROH) and fixation index (FST) were detected in Egyptian Nubian, Damascus, Barki and Boer goat breeds. A total of 46,268 SNP markers and 337 animals were available for the genomic analyses. On average, 145.44, 42.02, 87.90 and 126.95 ROHs were detected per individual in the autosomal genome of the respective breeds. The mean accumulative ROH lengths ranged from 46.5 Mb in Damascus to 360 Mb in Egyptian Nubian. The short ROH segments (< 2 Mb) were most frequent in all breeds, while the longest ROH segments (> 16 Mb) were exclusively found in the Egyptian Nubian. The highest average FROH was observed in Egyptian Nubian (~ 0.12) followed by Boer (~ 0.11), while the lowest FROH was found in Damascus (~ 0.05) and Barki breed (~ 0.03). The estimated mean FST was 0.14 (Egyptian Nubian and Boer), 0.077 (Egyptian Nubian and Barki), 0.075 (Egyptian Nubian and Damascus), 0.071 (Barki and Boer), 0.064 (Damascus and Boer), and 0.015 (Damascus and Barki), for each pair of breeds. Interestingly, multiple SNPs that accounted for high FST values were observed on chromosome 6 in regions harboring ALPK1 and KCNIP4. Genomic regions overlapping both FST and ROH harbor genes related to immunity (IL4R, PHF23, GABARAP, GPS2, and CD68), reproduction (SPATA2L, TNFSF12, TMEM95, and RNF17), embryonic development (TCF25 and SOX15) and adaptation (MC1R, KDR, and KIT), suggesting potential genetic adaptations to local environmental conditions. Our results contribute to the understanding of the genetic architecture of different goat breeds and may provide valuable information for effective preservation and breeding programs of local goat breeds in Egypt
A Review of Antimicrobial Therapy for Infectious Uveitis of the Posterior Segment
Treatment of infectious posterior uveitis represents a therapeutic challenge for ophthalmologists. The eye is a privileged site, maintained by blood ocular barriers, which limits penetration of systemic antimicrobials into the posterior segment. In addition, topical and subconjunctival therapies are incapable of producing sufficient drug concentrations, intraocularly. Posterior infectious uveitis can be caused by bacteria, virus, fungi, or protozoa. Mode of treatment varies greatly based on the infectious etiology. Certain drugs have advantages over others in the treatment of infectious uveitis. Topical and systemic therapies are often employed in the treatment of ocular infection, yet the route of treatment can have limitations based on penetration, concentration, and duration. The introduction of intravitreal antimicrobial therapy has advanced the management of intraocular infections. Being able to bypass blood-ocular barriers allows high drug concentrations to be delivered directly to the posterior segment with minimal systemic absorption. However, because the difference between the therapeutic and the toxic doses of some antimicrobial drugs falls within a narrow concentration range, intravitreal therapy could be associated with ocular toxicity risks. In many cases of infectious uveitis, combination of intravitreal and systemic therapies are necessary. In this comprehensive review, the authors aimed at reviewing clinically relevant data regarding intraocular and systemic antimicrobial therapy for posterior segment infectious uveitis. The review also discussed the evolving trends in intraocular treatment, and elaborated on antibiotic pharmacokinetics and pharmacodynamics, efficacy, and adverse effects
A Review of Antimicrobial Therapy for Infectious Uveitis of the Posterior Segment
Treatment of infectious posterior uveitis represents a therapeutic challenge for ophthalmologists. The eye is a privileged site, maintained by blood ocular barriers, which limits penetration of systemic antimicrobials into the posterior segment. In addition, topical and subconjunctival therapies are incapable of producing sufficient drug concentrations, intraocularly. Posterior infectious uveitis can be caused by bacteria, virus, fungi, or protozoa. Mode of treatment varies greatly based on the infectious etiology. Certain drugs have advantages over others in the treatment of infectious uveitis. Topical and systemic therapies are often employed in the treatment of ocular infection, yet the route of treatment can have limitations based on penetration, concentration, and duration. The introduction of intravitreal antimicrobial therapy has advanced the management of intraocular infections. Being able to bypass blood-ocular barriers allows high drug concentrations to be delivered directly to the posterior segment with minimal systemic absorption. However, because the difference between the therapeutic and the toxic doses of some antimicrobial drugs falls within a narrow concentration range, intravitreal therapy could be associated with ocular toxicity risks. In many cases of infectious uveitis, combination of intravitreal and systemic therapies are necessary. In this comprehensive review, the authors aimed at reviewing clinically relevant data regarding intraocular and systemic antimicrobial therapy for posterior segment infectious uveitis. The review also discussed the evolving trends in intraocular treatment, and elaborated on antibiotic pharmacokinetics and pharmacodynamics, efficacy, and adverse effects
Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications
Tannins represent a heterogeneous group of high-molecular-weight polyphenols that are ubiquitous among plant families, especially in cereals, as well as in many fruits and vegetables. Hydrolysable and condensed tannins, in addition to phlorotannins from marine algae, are the main classes of these bioactive compounds. Despite their low bioavailability, tannins have many beneficial pharmacological effects, such as anti-inflammatory, antioxidant, antidiabetic, anticancer, and cardioprotective effects. Microbiota-mediated hydrolysis of tannins produces highly bioaccessible metabolites, which have been extensively studied and account for most of the health effects attributed to tannins. This review article summarises the effect of the human microbiota on the metabolism of different tannin groups and the expected health benefits that may be induced by such mutual interactions. Microbial metabolism of tannins yields highly bioaccessible microbial metabolites that account for most of the systemic effects of tannins. This article also uses explainable artificial intelligence to define the molecular signatures of gut-biotransformed tannin metabolites that are correlated with chemical and biological activity. An understanding of microbiota–tannin interactions, tannin metabolism-related phenotypes (metabotypes) and chemical tannin-metabolites motifs is of great importance for harnessing the biological effects of tannins for drug discovery and other health benefits
The Impact of Business Intelligence Systems on Profitability and Risks of Firms
202105 bcvcAccepted ManuscriptRGC155009/15BEarly releas
A Review of Antimicrobial Therapy for Infectious Uveitis of the Posterior Segment
Treatment of infectious posterior uveitis represents a therapeutic challenge for ophthalmologists. The eye is a privileged site, maintained by blood ocular barriers, which limits penetration of systemic antimicrobials into the posterior segment. In addition, topical and subconjunctival therapies are incapable of producing sufficient drug concentrations, intraocularly. Posterior infectious uveitis can be caused by bacteria, virus, fungi, or protozoa. Mode of treatment varies greatly based on the infectious etiology. Certain drugs have advantages over others in the treatment of infectious uveitis. Topical and systemic therapies are often employed in the treatment of ocular infection, yet the route of treatment can have limitations based on penetration, concentration, and duration. The introduction of intravitreal antimicrobial therapy has advanced the management of intraocular infections. Being able to bypass blood-ocular barriers allows high drug concentrations to be delivered directly to the posterior segment with minimal systemic absorption. However, because the difference between the therapeutic and the toxic doses of some antimicrobial drugs falls within a narrow concentration range, intravitreal therapy could be associated with ocular toxicity risks. In many cases of infectious uveitis, combination of intravitreal and systemic therapies are necessary. In this comprehensive review, the authors aimed at reviewing clinically relevant data regarding intraocular and systemic antimicrobial therapy for posterior segment infectious uveitis. The review also discussed the evolving trends in intraocular treatment, and elaborated on antibiotic pharmacokinetics and pharmacodynamics, efficacy, and adverse effects
Dominance and G×E interaction effects improvegenomic prediction and genetic gain inintermediate wheatgrass (Thinopyrumintermedium)
Genomic selection (GS) based recurrent selection methods were developed to accelerate the domestication of intermediate wheatgrass [IWG, Thinopyrum intermedium (Host) Barkworth & D.R. Dewey]. A subset of the breeding population phenotyped at multiple environments is used to train GS models and then predict trait values of the breeding population. In this study, we implemented several GS models that investigated the use of additive and dominance effects and G×E interaction effects to understand how they affected trait predictions in intermediate wheatgrass. We evaluated 451 genotypes from the University of Minnesota IWG breeding program for nine agronomic and domestication traits at two Minnesota locations during 2017–2018. Genet-mean based heritabilities for these traits ranged from 0.34 to 0.77. Using fourfold cross validation, we observed the highest predictive abilities (correlation of 0.67) in models that considered G×E effects. When G×E effects were fitted in GS models, trait predictions improved by 18%, 15%, 20%, and 23% for yield, spike weight, spike length, and free threshing, respectively. Genomic selection models with dominance effects showed only modest increases of up to 3% and were trait-dependent. Crossenvironment predictions were better for high heritability traits such as spike length, shatter resistance, free threshing, grain weight, and seed length than traits with low heritability and large environmental variance such as spike weight, grain yield, and seed width. Our results confirm that GS can accelerate IWG domestication by increasing genetic gain per breeding cycle and assist in selection of genotypes with promise of better performance in diverse environments
- …