239 research outputs found

### Factoring Polynomials over Finite Fields using Balance Test

We study the problem of factoring univariate polynomials over finite fields.
Under the assumption of the Extended Riemann Hypothesis (ERH), (Gao, 2001)
designed a polynomial time algorithm that fails to factor only if the input
polynomial satisfies a strong symmetry property, namely square balance. In this
paper, we propose an extension of Gao's algorithm that fails only under an even
stronger symmetry property. We also show that our property can be used to
improve the time complexity of best deterministic algorithms on most input
polynomials. The property also yields a new randomized polynomial time
algorithm

### Quasi-polynomial Hitting-set for Set-depth-Delta Formulas

We call a depth-4 formula C set-depth-4 if there exists a (unknown) partition
(X_1,...,X_d) of the variable indices [n] that the top product layer respects,
i.e. C(x) = \sum_{i=1}^k \prod_{j=1}^{d} f_{i,j}(x_{X_j}), where f_{i,j} is a
sparse polynomial in F[x_{X_j}]. Extending this definition to any depth - we
call a depth-Delta formula C (consisting of alternating layers of Sigma and Pi
gates, with a Sigma-gate on top) a set-depth-Delta formula if every Pi-layer in
C respects a (unknown) partition on the variables; if Delta is even then the
product gates of the bottom-most Pi-layer are allowed to compute arbitrary
monomials.
In this work, we give a hitting-set generator for set-depth-Delta formulas
(over any field) with running time polynomial in exp(({Delta}^2 log s)^{Delta -
1}), where s is the size bound on the input set-depth-Delta formula. In other
words, we give a quasi-polynomial time blackbox polynomial identity test for
such constant-depth formulas. Previously, the very special case of Delta=3
(also known as set-multilinear depth-3 circuits) had no known sub-exponential
time hitting-set generator. This was declared as an open problem by Shpilka &
Yehudayoff (FnT-TCS 2010); the model being first studied by Nisan & Wigderson
(FOCS 1995). Our work settles this question, not only for depth-3 but, up to
depth epsilon.log s / loglog s, for a fixed constant epsilon < 1.
The technique is to investigate depth-Delta formulas via depth-(Delta-1)
formulas over a Hadamard algebra, after applying a `shift' on the variables. We
propose a new algebraic conjecture about the low-support rank-concentration in
the latter formulas, and manage to prove it in the case of set-depth-Delta
formulas.Comment: 22 page

### Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

We present a single, common tool to strictly subsume all known cases of
polynomial time blackbox polynomial identity testing (PIT) that have been
hitherto solved using diverse tools and techniques. In particular, we show that
polynomial time hitting-set generators for identity testing of the two
seemingly different and well studied models - depth-3 circuits with bounded top
fanin, and constant-depth constant-read multilinear formulas - can be
constructed using one common algebraic-geometry theme: Jacobian captures
algebraic independence. By exploiting the Jacobian, we design the first
efficient hitting-set generators for broad generalizations of the
above-mentioned models, namely:
(1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of
the polynomials computed by the product gates (no bounded top fanin
restriction), and (2) constant-depth constant-occur formulas (no multilinear
restriction).
Constant-occur of a variable, as we define it, is a much more general concept
than constant-read. Also, earlier work on the latter model assumed that the
formula is multilinear. Thus, our work goes further beyond the results obtained
by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et
al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011),
and brings them under one unifying technique.
In addition, using the same Jacobian based approach, we prove exponential
lower bounds for the immanant (which includes permanent and determinant) on the
same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our
results reinforce the intimate connection between identity testing and lower
bounds by exhibiting a concrete mathematical tool - the Jacobian - that is
equally effective in solving both the problems on certain interesting and
previously well-investigated (but not well understood) models of computation

### An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999]

### Lower Bounds for Depth Three Arithmetic Circuits with Small Bottom Fanin

Shpilka and Wigderson (CCC 99) had posed the problem of proving exponential lower bounds for (nonhomogeneous) depth three arithmetic circuits with bounded bottom fanin over a field F of characteristic zero. We resolve this problem by proving a N^(Omega(d/t)) lower bound for (nonhomogeneous) depth three arithmetic circuits with bottom fanin at most t computing an explicit N-variate polynomial of degree d over F.
Meanwhile, Nisan and Wigderson (CC 97) had posed the problem of proving superpolynomial lower bounds for homogeneous depth five arithmetic circuits. Over fields of characteristic zero, we show a lower bound of N^(Omega(sqrt(d))) for homogeneous depth five circuits (resp. also for depth three circuits) with bottom fanin at most N^(u), for any fixed u < 1. This resolves the problem posed by Nisan and Wigderson only partially because of the added restriction on the bottom fanin (a general homogeneous depth five circuit has bottom fanin at most N)

### Hitting Sets for Orbits of Circuit Classes and Polynomial Families

The orbit of an n-variate polynomial f(?) over a field ? is the set {f(A?+?) : A ? GL(n,?) and ? ? ??}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of:
1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials.
2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ? ?}, which is complete for arithmetic formulas.
3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials.
4) Polynomials computable by occur-once formulas

### On the Symmetries of and Equivalence Test for Design Polynomials

In a Nisan-Wigderson design polynomial (in short, a design polynomial), every pair of monomials share a few common variables. A useful example of such a polynomial, introduced in [Neeraj Kayal et al., 2014], is the following: NW_{d,k}({x}) = sum_{h in F_d[z], deg(h) <= k}{ prod_{i=0}^{d-1}{x_{i, h(i)}}}, where d is a prime, F_d is the finite field with d elements, and k << d. The degree of the gcd of every pair of monomials in NW_{d,k} is at most k. For concreteness, we fix k = ceil[sqrt{d}]. The family of polynomials NW := {NW_{d,k} : d is a prime} and close variants of it have been used as hard explicit polynomial families in several recent arithmetic circuit lower bound proofs. But, unlike the permanent, very little is known about the various structural and algorithmic/complexity aspects of NW beyond the fact that NW in VNP. Is NW_{d,k} characterized by its symmetries? Is it circuit-testable, i.e., given a circuit C can we check efficiently if C computes NW_{d,k}? What is the complexity of equivalence test for NW, i.e., given black-box access to a f in F[{x}], can we check efficiently if there exists an invertible linear transformation A such that f = NW_{d,k}(A * {x})? Characterization of polynomials by their symmetries plays a central role in the geometric complexity theory program. Here, we answer the first two questions and partially answer the third.
We show that NW_{d,k} is characterized by its group of symmetries over C, but not over R. We also show that NW_{d,k} is characterized by circuit identities which implies that NW_{d,k} is circuit-testable in randomized polynomial time. As another application of this characterization, we obtain the "flip theorem" for NW.
We give an efficient equivalence test for NW in the case where the transformation A is a block-diagonal permutation-scaling matrix. The design of this algorithm is facilitated by an almost complete understanding of the group of symmetries of NW_{d,k}: We show that if A is in the group of symmetries of NW_{d,k} then A = D * P, where D and P are diagonal and permutation matrices respectively. This is proved by completely characterizing the Lie algebra of NW_{d,k}, and using an interplay between the Hessian of NW_{d,k} and the evaluation dimension

### Multi-k-ic Depth Three Circuit Lower Bound

In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials in every product gate of the circuit. This model is a natural generalization of multilinear depth three circuits that allows the formal degree of the circuit to exceed the number of underlying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number of variables). The problem of proving lower bounds for depth three circuits with high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi [7] on depth reduction to high formal degree depth three circuits. In this work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k

- …