3,638 research outputs found
mRNA of bovine tissue inhibitor of metalloproteinase: Sequence and expression in bovine ovarian tissue
Object Segmentation in Images using EEG Signals
This paper explores the potential of brain-computer interfaces in segmenting
objects from images. Our approach is centered around designing an effective
method for displaying the image parts to the users such that they generate
measurable brain reactions. When an image region, specifically a block of
pixels, is displayed we estimate the probability of the block containing the
object of interest using a score based on EEG activity. After several such
blocks are displayed, the resulting probability map is binarized and combined
with the GrabCut algorithm to segment the image into object and background
regions. This study shows that BCI and simple EEG analysis are useful in
locating object boundaries in images.Comment: This is a preprint version prior to submission for peer-review of the
paper accepted to the 22nd ACM International Conference on Multimedia
(November 3-7, 2014, Orlando, Florida, USA) for the High Risk High Reward
session. 10 page
Competition and cooperation:aspects of dynamics in sandpiles
In this article, we review some of our approaches to granular dynamics, now
well known to consist of both fast and slow relaxational processes. In the
first case, grains typically compete with each other, while in the second, they
cooperate. A typical result of {\it cooperation} is the formation of stable
bridges, signatures of spatiotemporal inhomogeneities; we review their
geometrical characteristics and compare theoretical results with those of
independent simulations. {\it Cooperative} excitations due to local density
fluctuations are also responsible for relaxation at the angle of repose; the
{\it competition} between these fluctuations and external driving forces, can,
on the other hand, result in a (rare) collapse of the sandpile to the
horizontal. Both these features are present in a theory reviewed here. An arena
where the effects of cooperation versus competition are felt most keenly is
granular compaction; we review here a random graph model, where three-spin
interactions are used to model compaction under tapping. The compaction curve
shows distinct regions where 'fast' and 'slow' dynamics apply, separated by
what we have called the {\it single-particle relaxation threshold}. In the
final section of this paper, we explore the effect of shape -- jagged vs.
regular -- on the compaction of packings near their jamming limit. One of our
major results is an entropic landscape that, while microscopically rough,
manifests {\it Edwards' flatness} at a macroscopic level. Another major result
is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction
Dynamics at the angle of repose: jamming, bistability, and collapse
When a sandpile relaxes under vibration, it is known that its measured angle
of repose is bistable in a range of values bounded by a material-dependent
maximal angle of stability; thus, at the same angle of repose, a sandpile can
be stationary or avalanching, depending on its history. In the nearly jammed
slow dynamical regime, sandpile collapse to a zero angle of repose can also
occur, as a rare event. We claim here that fluctuations of {\it dilatancy} (or
local density) are the key ingredient that can explain such varied phenomena.
In this work, we model the dynamics of the angle of repose and of the density
fluctuations, in the presence of external noise, by means of coupled stochastic
equations. Among other things, we are able to describe sandpile collapse in
terms of an activated process, where an effective temperature (related to the
density as well as to the external vibration intensity) competes against the
configurational barriers created by the density fluctuations.Comment: 15 pages, 1 figure. Minor changes and update
Statistics of quantum transmission in one dimension with broad disorder
We study the statistics of quantum transmission through a one-dimensional
disordered system modelled by a sequence of independent scattering units. Each
unit is characterized by its length and by its action, which is proportional to
the logarithm of the transmission probability through this unit. Unit actions
and lengths are independent random variables, with a common distribution that
is either narrow or broad. This investigation is motivated by results on
disordered systems with non-stationary random potentials whose fluctuations
grow with distance.
In the statistical ensemble at fixed total sample length four phases can be
distinguished, according to the values of the indices characterizing the
distribution of the unit actions and lengths. The sample action, which is
proportional to the logarithm of the conductance across the sample, is found to
obey a fluctuating scaling law, and therefore to be non-self-averaging, in
three of the four phases. According to the values of the two above mentioned
indices, the sample action may typically grow less rapidly than linearly with
the sample length (underlocalization), more rapidly than linearly
(superlocalization), or linearly but with non-trivial sample-to-sample
fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl
Phase resetting of collective rhythm in ensembles of oscillators
Phase resetting curves characterize the way a system with a collective
periodic behavior responds to perturbations. We consider globally coupled
ensembles of Sakaguchi-Kuramoto oscillators, and use the Ott-Antonsen theory of
ensemble evolution to derive the analytical phase resetting equations. We show
the final phase reset value to be composed of two parts: an immediate phase
reset directly caused by the perturbation, and the dynamical phase reset
resulting from the relaxation of the perturbed system back to its dynamical
equilibrium. Analytical, semi-analytical and numerical approximations of the
final phase resetting curve are constructed. We support our findings with
extensive numerical evidence involving identical and non-identical oscillators.
The validity of our theory is discussed in the context of large ensembles
approximating the thermodynamic limit.Comment: submitted to Phys. Rev.
Metastability in zero-temperature dynamics: Statistics of attractors
The zero-temperature dynamics of simple models such as Ising ferromagnets
provides, as an alternative to the mean-field situation, interesting examples
of dynamical systems with many attractors (absorbing configurations, blocked
configurations, zero-temperature metastable states). After a brief review of
metastability in the mean-field ferromagnet and of the droplet picture, we
focus our attention onto zero-temperature single-spin-flip dynamics of
ferromagnetic Ising models. The situations leading to metastability are
characterized. The statistics and the spatial structure of the attractors thus
obtained are investigated, and put in perspective with uniform a priori
ensembles. We review the vast amount of exact results available in one
dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular
Matter edited by M. Nicodem
- …