3,844 research outputs found
Fe Ka line emission from the Arches cluster region - evidence for ongoing particle bombardment?
We present the results of eight years of XMM-Newton observations of the
region surrounding the Arches cluster in the Galactic Center. We study the
spatial distribution and temporal behaviour of the Fe-Ka line emission with the
objective of identifying the likely source of the excitation. We investigate
the variability of the 6.4-keV line emission of four clouds through spectral
fitting of the EPIC MOS data with the use of a modelled background, which
avoids many of the systematics inherent in local background subtraction. We
also employ spectral stacking of both EPIC PN and MOS data to search for
evidence of an Fe-K edge feature imprinted on the underlying X-ray continuum.
The lightcurves of the Fe-Ka line from three bright molecular knots close to
the Arches cluster are found to be constant over the 8-year observation window.
West of the cluster, however, we found a bright cloud exhibiting the fastest
Fe-Ka variability yet seen in a molecular cloud in the Galactic Center region.
The time-averaged spectra of the molecular clouds reveal no convincing evidence
of the 7.1-keV edge feature. The EW of the 6.4-keV line emitted by the clouds
near the cluster is found to be ~1.0 keV. The observed Fe-Ka line flux and the
high EW suggest the fluorescence has a photoionization origin, although
excitation by cosmic-ray particles is not specifically excluded. For the three
clouds nearest to the cluster, an identification of the source of
photo-ionizing photons with an earlier outburst of Sgr A* is however at best
tentative. The hardness of the nonthermal component associated with the 6.4-keV
line emission might be best explained in terms of bombardment by cosmic-ray
particles from the Arches cluster itself. The relatively short-timescale
variability seen in the 6.4-keV line emission from the cloud to the West of the
cluster is most likely the result of illumination by a nearby transient X-ray
source.Comment: 13 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy
Background
The recent spread of West Nile Virus in temperate countries has raised concern. Predicting the likelihood of transmission is crucial to ascertain the threat to Public and Veterinary Health. However, accurate models of West Nile Virus (WNV) expansion in Europe may be hampered by limited understanding of the population dynamics of their primary mosquito vectors and their response to environmental changes.<p></p>
Methods
We used data collected in north-eastern Italy (2009–2011) to analyze the determinants of the population growth rate of the primary WNV vector Culex pipiens. A series of alternative growth models were fitted to longitudinal data on mosquito abundance to evaluate the strength of evidence for regulation by intrinsic density-dependent and/or extrinsic environmental factors. Model-averaging algorithms were then used to estimate the relative importance of intrinsic and extrinsic variables in describing the variations of per-capita growth rates.<p></p>
Results
Results indicate a much greater contribution of density-dependence in regulating vector population growth rates than of any environmental factor on its own. Analysis of an average model of Cx. pipiens growth revealed that the most significant predictors of their population dynamics was the length of daylight, estimated population size and temperature conditions in the 15 day period prior to sampling. Other extrinsic variables (including measures of precipitation, number of rainy days, and humidity) had only a minor influence on Cx. pipiens growth rates.<p></p>
Conclusions
These results indicate the need to incorporate density dependence in combination with key environmental factors for robust prediction of Cx. pipiens population expansion and WNV transmission risk. We hypothesize that detailed analysis of the determinants of mosquito vector growth rate as conducted here can help identify when and where an increase in vector population size and associated WNV transmission risk should be expected.<p></p>
A neutron scattering study of the interplay between structure and magnetism in Ba(FeCo)As
Single crystal neutron diffraction is used to investigate the magnetic and
structural phase diagram of the electron doped superconductor
Ba(FeCo)As. Heat capacity and resistivity measurements have
demonstrated that Co doping this system splits the combined antiferromagnetic
and structural transition present in BaFeAs into two distinct
transitions. For =0.025, we find that the upper transition is between the
high-temperature tetragonal and low-temperature orthorhombic structures with
( K) and the antiferromagnetic transition occurs at
K. We find that doping rapidly suppresses the
antiferromagnetism, with antiferromagnetic order disappearing at . However, there is a region of co-existence of antiferromagnetism and
superconductivity. The effect of the antiferromagnetic transition can be seen
in the temperature dependence of the structural Bragg peaks from both neutron
scattering and x-ray diffraction. We infer from this that there is strong
coupling between the antiferromagnetism and the crystal lattice
- …