7 research outputs found
Interdependency matrix to evaluate influence factors in circular value creation systems
The circular economy is one of the emerging trends in value creation systems, which emphasises the efficient use of resources, minimising waste and the loss of value added as well as replacing the concept of “end of life” for products and services in value creation systems. Since many of products and complementary services available on the market are not designed for circularity, it is challenging to convert the linear product life to a circular life cycle. However, conceptualise value creation systems that are suitable for a circular economy is a challenge, as a large number of influence factors are interrelated. Thereby not all influence factors reinforce each other, but can also have no or even a negative influence. Thus, in order to make the mutual influence transparent and create a holistic understanding of how the circularity can be implemented in value creation systems, this paper proposes an interdependency matrix which is enhancing the decision-making in the conception of circular value creation systems. The research design follows the mixed method approach. First, a literature review is carried out to review the state of the art. The research is extended by structuring relevant influence factors in the design of circular value creation. The findings from the literature research are supplemented by expert knowledge from industry and research. Finally, the findings are then incorporated into the development of the interdependency matrix. The assessment of the correlations between the individual influence factors is based on unique morphologies. A case study serves as a reference and framework for the application of the developed interdependency matrix. In order to validate and further develop the interdependency matrix, a verification process is carried out by creating application examples for the developed case study. The application examples serve as practical instances to test the applicability and resilience of the interdependency matrix. The proposed interdependency matrix shows which influence factors have correlations to each other – a distinction is made between whether the influence has a positive or negative effect. It also shows which influence factors are to be considered independently and for which influence factors a statement about their correlation is only possible depending on the specific situation in the value creation system. The core of this study is the determination and evaluation of the correlations, which the influence factors of a circular value creation system exhibit. The developed interdependency matrix aims to ensure that decision-makers in value creation systems are increasingly able to make decisions that promote a circular value creation in future. However, therefore it is insufficient to consider only individual influence factors or measures without their correlations. The approach serves to take a holistic view of a circular value creation system and is intended to help accelerate the transformation towards a circular economy
Development of an Approach for a "Cross Learning Factory Product Production System" for Circular Economy
Circular economy aims to support reuse and extends the product life cycles through repair, remanufacturing, upgrades and retrofits, as well as closing material cycles through recycling. To successfully manage the necessary transformation processes to circular economy, manufacturing enterprises rely on the competency of their employees. The definition of competency requirements for circular economy-oriented production networks will contribute to the operationalization of circular economy. The International Association of Learning Factories (IALF) statesin its mission the development of learning systems addressing these challenges for training of students and further education of industry employees. To identify the required competencies for circular economy, the major changes of the product life cycle phases have been investigated based on the state of the science and compared to the socio-technical infrastructure and thematic fields of the learning factories considered in this paper. To operationalize the circular economy approach in the product design and production phase in learning factories, an approach for a cross learning factory network (so called "Cross Learning Factory Product Production System (CLFPPS)") has been developed. The proposed CLFPPS represents a network on the design dimensions of learning factories. This approach contributes to the promotion of circular economy in learning factories as it makes use of and combines the focus areas of different learning factories. This enables the CLFPPS to offer a holistic view on the product life cycle in production networks
Smart Innovation : Künstliche Intelligenz im Innovationsmanagement
Die vorliegende Studie zeigt, dass das Thema Smart Innovation (der Einsatz von KI-Systemen im Innovationsprozess) von hoher Relevanz ist und Zustimmung für den Einsatz von KI im Innovationsprozess besteht. Sowohl von den Unternehmen als auch von den Studierenden werden Effizienzsteigerung, schnellere Bearbeitung großer Datenmengen, die Steigerung der Wettbewerbsfähigkeit und Kosteneinsparungen als Gründe für den Einsatz von KI im Innovationsprozess gesehen. In Deutschland finden KI-Technologien bereits jetzt punktuell und branchenunabhängig Anwendung im Innovationsprozess. Einflussfaktoren, wie Hochschulkooperationen, Innovationsabteilungen und Open Innovation können den Einsatz fördern. Vor allem KMU aus den frühen Phasen der Industrialisierung sollten davon Gebrauch machen. In einem Zusammenspiel von menschlicher Expertise und der schnellen und präzisen Datenverarbeitung der KI liegt das Erfolgsgeheimnis eines möglichst effizienten Innovationsprozesses. Es wird deutlich, dass verschiedene Einflussfaktoren erforderlich sind, um die Anwendung von Smart Innovation praktikabel zu gestalten. So gilt es zunächst die technischen Voraussetzungen einer funktionierenden IT-Infrastruktur zu erfüllen. Gleichbedeutend sind offene Fragestellungen hinsichtlich der Datenverfügbarkeit, des Dateneigentums und der Datensicherheit. Ohne rechtlichen Rahmen sind kaum Akteure gewillt, ihre Daten zu teilen und zugänglich zu machen. Erschwert wird der Einsatz von KI durch den nationalen IT-Fachkräftemangel. So sehen sowohl Unternehmen als auch die Studierenden das größte Hindernis im Mangel von KI-relevantem Know-how. Dies hemmt einerseits die Forschung, andererseits fehlt es den Unternehmen an erforderlichen Fachkräften für eine Einführung von KI im Unternehmen. Es ist jedoch notwendig, den Unternehmen durch das Aufzeigen von Anwendungsbeispielen, die Potenziale und Chancen von Smart Innovation zu vermitteln. Es gilt, die anwendungsorientierte Forschung zu fördern und einen reibungslosen Transfer in die Wirtschaft sicherzustellen. Dieser Wissensaustausch erfordert zudem eine höhere unternehmerische Risikobereitschaft. Es wächst die Notwendigkeit, unternehmensspezifische KI-Strategien zu entwerfen. Die Technologien entwickeln sich schnell, es gilt daher auch für Unternehmen sich diesem Fortschritt anzupassen, um den Anschluss nicht zu verlieren und die Wettbewerbsfähigkeit zu sichern. So liegt die größte Herausforderung im grundlegenden Wandel der Geschäftsmodelle, denn die Wertschöpfung erfolgreicher Unternehmen basiert zunehmend auf "digitalen assets". Daten gelten generell als die neue Ressource, als Rohstoff, auch für Smarte Innovationen. Die Bedeutung von Smart Innovation wird in Zukunft weiterhin ansteigen. Kurz- und mittelfristig unterstützt die Schwache KI vor allem bei der Datensammlung und -analyse, bei der Prozessautomatisierung sowie bei der Bedürfnis- und Trendidentifikation. Weiter werden sich inkrementelle Veränderungen im Innovationsmanagement mithilfe von Simulationen und der zufälligen Kombination von Technologien erhofft. Langfristig wird eine stärkere KI den Einsatz der Menschen im Innovationsprozess in Teilen ersetzen können. Ob autonomes Innovieren zukünftig möglich sein wird, hängt zunächst von dem Ausmaß der Neuheit einer Innovation, aber vor allem auch von der Möglichkeit einer kreativen KI ab. Es ist davon auszugehen, dass die Fortschritte im Bereich der KI nicht nur radikale Innovationen ermöglichen werden, sondern auch zu einer strukturellen Veränderung unseres heutigen Verständnisses des Innovationsmanagements führen
Development of an approach for a "Cross Learning Factory Product Production System" for circular economy
Circular economy aims to support reuse and extends the product life cycles through repair, remanufacturing, upgrades and retrofits, as well as closing material cycles through recycling. To successfully manage the necessary transformation processes to circular economy, manufacturing enterprises rely on the competency of their employees. The definition of competency requirements for circular economy-oriented production networks will contribute to the operationalization of circular economy. The International Association of Learning Factories (IALF) statesin its mission the development of learning systems addressing these challenges for training of students and further education of industry employees. To identify the required competencies for circular economy, the major changes of the product life cycle phases have been investigated based on the state of the science and compared to the socio-technical infrastructure and thematic fields of the learning factories considered in this paper. To operationalize the circular economy approach in the product design and production phase in learning factories, an approach for a cross learning factory network (so called "Cross Learning Factory Product Production System (CLFPPS)") has been developed. The proposed CLFPPS represents a network on the design dimensions of learning factories. This approach contributes to the promotion of circular economy in learning factories as it makes use of and combines the focus areas of different learning factories. This enables the CLFPPS to offer a holistic view on the product life cycle in production networks
Smart Innovation – how will artificial intelligence influence innovation management?
Imagine a world in which the search for tomorrow's trends is not subject to a long and laborious data search but is possible with a single mouse click. Through the use of artificial intelligence (AI), this reality is made possible and is to be further advanced through research. The study therefore aims to provide an initial overview of the young research field. Based on research, expert interviews, company and student surveys, current application possibilities of AI in the innovation process (defined as Smart Innovation), existing challenges that slow down the further development are discussed in more detail and future application possibilities are presented. Finally, a recommendation for action is made for business, politics and science to help overcome the current obstacles together and thus drive the future of Smart Innovation
Smart Innovation – How will Artificial Intelligence influence Innovation Management of (software) products?
Imagine a world in which the search for tomorrow's trends of (software) products is not subject to a long and laborious data search but is possible with a single mouse click. Through the use of artificial intelligence (AI), this reality is made possible and is to be further advanced through research. The study therefore aims to provide an initial overview of the young research field. Based on research, expert interviews, company and student surveys, current application possibilities of AI in the innovation process (defined as Smart Innovation), existing challenges that slow down the further development are discussed in more detail and future application possibilities are presented. Finally, a recommendation for action is made for business, politics and science to help overcome the current obstacles together and thus drive the future of Smart Innovation
Development of an IALF overarching learning module for circular economy
The increasing importance of sustainable business models due to the scarcity of resources and resulting political regulations leads many companies and research institutions towards the concept of Circular Economy. Subsequently, the learning factory community is facing the challenge of expanding existing concepts to include Circular Economy in their learning factories. Therefore, a learning factory- and competency-based module for Circular Economy is developed by eight members of the International Association of Learning Factories to define a common ground. The module covers the basics of Circular Economy in the production environment and make it tangible through concrete use cases. To achieve these goals, extensive research on existing concepts has been conducted by IALF experts to analyze learning objectives and requirements in detail and derive required competencies. Based on that, the learning module is developed