33 research outputs found

    OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets

    Get PDF
    In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects’ labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant pro- gram FPU-MICINN 2010 and the Spanish projects TAROTH: New developments toward a Robot at Home (DPI2011-25483) and PROMOVE: Advances in mobile robotics for promoting independent life of elders (DPI2014-55826-R

    Experiences on a motivational learning approach for robotics in undergraduate courses

    Get PDF
    This paper presents an educational experience carried out in robotics undergraduate courses from two different degrees: Computer Science and Industrial Engineering, having students with diverse capabilities and motivations. The experience compares two learning strategies for the practical lessons of such courses: one relies on code snippets in Matlab to cope with typical robotic problems like robot motion, localization, and mapping, while the second strategy opts for using the ROS framework for the development of algorithms facing a competitive challenge, e.g. exploration algorithms. The obtained students’ opinions were instructive, reporting, for example, that although they consider harder to master ROS when compared to Matlab, it might be more useful in their (robotic related) professional careers, which enhanced their disposition to study it. They also considered that the challenge-exercises, in addition to motivate them, helped to develop their skills as engineers to a greater extent than the skeleton-code based ones. These and other conclusions will be useful in posterior courses to boost the interest and motivation of the students.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    UPGMpp: a Software Library for Contextual Object Recognition

    Get PDF
    Object recognition is a cornerstone task towards the scene understanding problem. Recent works in the field boost their perfor- mance by incorporating contextual information to the traditional use of the objects’ geometry and/or appearance. These contextual cues are usually modeled through Conditional Random Fields (CRFs), a partic- ular type of undirected Probabilistic Graphical Model (PGM), and are exploited by means of probabilistic inference methods. In this work we present the Undirected Probabilistic Graphical Models in C++ library (UPGMpp), an open source solution for representing, training, and per- forming inference over undirected PGMs in general, and CRFs in par- ticular. The UPGMpp library supposes a reliable and comprehensive workbench for recognition systems exploiting contextual information, in- cluding a variety of inference methods based on local search, graph cuts, and message passing approaches. This paper illustrates the virtues of the library, i.e. it is efficient, comprehensive, versatile, and easy to use, by presenting a use-case applied to the object recognition problem in home scenes from the challenging NYU2 dataset.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant program FPU-MICINN 2010 and the Spanish projects “TAROTH: New developments toward a robot at home” (Ref. DPI2011-25483) and “PROMOVE: Advances in mobile robotics for promoting independent life of elders” (Ref. DPI2014-55826-R

    An evaluation of plume tracking as a strategy for gas source localization in turbulent wind flows

    Get PDF
    Gas source localization is likely the most direct application of a mobile robot endowed with gas sensing capabilities. Multiple algorithms have been proposed to locate the gas source within a known environment, ranging from bio-inspired to probabilistic ones. However, their application to real-world conditions still remains a major issue due to the great difficulties those scenarios bring, among others, the common presence of obstacles which hamper the movement of the robot and notably ncrease the complexity of the gas dispersion. In this work, we consider a plume tracking algorithm based on the well-known silkworm moth strategy and analyze its performance when facing different realistic environments characterized by the presence of obstacles and turbulent wind flows. We rely on computational fluid dynamics and the open source gas dispersion simulator GADEN to generate realistic gas distributions in scenarios where the presence of obstacles breaks down the ideal downwind plume. We first propose some modifications to the original silkworm moth algorithm in order to deal with the presence of obstacles in the environment (avoiding collisions) and then analyze its performance within four challenging environments.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto de excelencia de la Junata de Andalucia TEP2012-53

    Online Context-based Object Recognition for Mobile Robots

    Get PDF
    This work proposes a robotic object recognition system that takes advantage of the contextual information latent in human-like environments in an online fashion. To fully leverage context, it is needed perceptual information from (at least) a portion of the scene containing the objects of interest, which could not be entirely covered by just an one-shot sensor observation. Information from a larger portion of the scenario could still be considered by progressively registering observations, but this approach experiences difficulties under some circumstances, e.g. limited and heavily demanded computational resources, dynamic environments, etc. Instead of this, the proposed recognition system relies on an anchoring process for the fast registration and propagation of objects’ features and locations beyond the current sensor frustum. In this way, the system builds a graphbased world model containing the objects in the scenario (both in the current and previously perceived shots), which is exploited by a Probabilistic Graphical Model (PGM) in order to leverage contextual information during recognition. We also propose a novel way to include the outcome of local object recognition methods in the PGM, which results in a decrease in the usually high CRF learning complexity. A demonstration of our proposal has been conducted employing a dataset captured by a mobile robot from restaurant-like settings, showing promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    DetecciĂłn de Lugares con Camaras RGB-D. AplicaciĂłn a Cierre de Bucles en SLAM

    Get PDF
    En este trabajo se propone un método que combina descriptores de imágenes de intensidad y de profundidad para detectar de manera robusta el problema de cierre de bucle en SLAM. La robustez del método, proporcionada por el empleo conjunto de información de diversa naturaleza, permite detectar lugares revisitados en situaciones donde m´etodos basados solo en intensidad o en profundidad presentan dificultades (p.e. condiciones de iluminación deficientes, o falta de geometría). Además, se ha diseñado el métod cuenta su eficiencia, recurriendo para ello al detector FAST para extraer las características de las observaciones y al descriptor binario BRIEF. La detección de bucle se completa con una Bolsa de Palabras binarias. El rendimiento del método propuesto se ha evaluado en condiciones reales, obteniéndose resultados muy satisfactorios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Intrinsic calibration of depth cameras for mobile robots using a radial laser scanner

    Get PDF
    Depth cameras, typically in RGB-D configurations, are common devices in mobile robotic platforms given their appealing features: high frequency and resolution, low price and power requirements, among others. These sensors may come with significant, non-linear errors in the depth measurements that jeopardize robot tasks, like free-space detection, environment reconstruction or visual robot-human interaction. This paper presents a method to calibrate such systematic errors with the help of a second, more precise range sensor, in our case a radial laser scanner. In contrast to what it may seem at first, this does not mean a serious limitation in practice since these two sensors are often mounted jointly in many mobile robotic platforms, as they complement well each other. Moreover, the laser scanner can be used just for the calibration process and get rid of it after that. The main contributions of the paper are: i) the calibration is formulated from a probabilistic perspective through a Maximum Likelihood Estimation problem, and ii) the proposed method can be easily executed automatically by mobile robotic platforms. To validate the proposed approach we evaluated for both, local distortion of 3D planar reconstructions and global shifts in the measurements, obtaining considerably more accurate results. A C++ open-source implementation of the presented method has been released for the benefit of the community.Research projects WISER (DPI2017-84827-R), funded by the Spanish Government and the European Regional Development’s Funds (FEDER), MoveCare (ICT-26-2016b-GA-732158), funded by the European H2020 program, the European Social Found through the Youth Employment Initiative for the promotion of young researchers, and a postdoc contract from the IPPIT program of the University of Malaga. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore