4,597 research outputs found
QML and GMM estimators of stochastic volatility models: Response to Andersen and Sorensen
Publicad
Quasi-Maximum Likelihood estimation of Stochastic Volatility models
Publicado además en: Recent developments in Time Series, 2003, vol. 2, ISBN13: 9781840649512, pp. 117-134Changes in variance or volatility over time can be modelled using stochastic volatility (SV) models. This approach is based on treating the volatility as an unobserved vatiable, the logarithm of which is modelled as a linear stochastic process, usually an autoregression. This article analyses the asymptotic and finite sample properties of a Quasi-Maximum Likelihood (QML) estimator based on the Kalman filter. The relative efficiency of the QML estimator when compared with estimators based on the Generalized Method of Moments is shown to be quite high for parameter values often found in empirical applications. The QML estimator can still be employed when the SV model is generalized to allow for distributions with heavier tails than the normal. SV models are finally fitted to daily observations on the yen/dollar exchange rate.Publicad
Quasi-Maximum Likelihood estimation of Stochastic Volatility models.
Changes in variance or volatility over time can be modelled using stochastic volatility (SV) models. This approach is based on treating the volatility as an unobserved vatiable, the logarithm of which is modelled as a linear stochastic process, usually an autoregression. This article analyses the asymptotic and finite sample properties of a Quasi-Maximum Likelihood (QML) estimator based on the Kalman filter. The relative efficiency of the QML estimator when compared with estimators based on the Generalized Method of Moments is shown to be quite high for parameter values often found in empirical applications. The QML estimator can still be employed when the SV model is generalized to allow for distributions with heavier tails than the normal. SV models are finally fitted to daily observations on the yen/dollar exchange rate.Exchange rates; Generalized method of moments; Kalman filter; Quasi- maximum likelihood; Stochastic volatility;
An overview of probabilistic and time series models in finance
In this paper, we partially review probabilistic and time series models in finance. Both discrete and continuous .time models are described. The characterization of the No- Arbitrage paradigm is extensively studied in several financial market contexts. As the probabilistic models become more and more complex to be realistic, the Econometrics needed to estimate them are more difficult. Consequently, there is still much research to be done on the link between probabilistic and time series models.Modeling Text Databases.- An Overview of Probabilistic and Time Series Models in Finance.- Stereological Estimation of the Rose of Directions.- Approximations for Multiple Scan Statistics.- Krawtchouk Polynomials and Krawtchouk Matrices.- An Elementary Rigorous Introduction to Exact Sampling.- On the Different Extensions of the Ergodic Theorem of Information Theory.- Dynamic Stochastic Models for Indexes and Thesauri.- Stability and Optimal Control.- Statistical Distances Based on Euclidean Graphs.- Implied Volatility.- On the Increments of the Brownian Sheet.- Compound Poisson Approximation.- Penalized Model Selection for Ill-posed Linear Problems.- The Arov-Grossman Model.- Recent Results in Geometric Analysis.- Dependence or Independence of the Sample Mean.- Optimal Stopping Problems for Time-Homogeneous Diffusions.- Criticality in Epidemics.- Acknowledgments.- Reference.- Index
Which univariate time series model predicts quicker a crisis? The Iberia case
In this paper four univariate models are fitted to monthly observations of the number of passengers in the Spanish airline IBERIA from January 1985 to October 1994. During the first part of the sample, the series shows an upward trend which has a rupture during 1990 with the slope changing to be negative. The series is also characterized by having seasonal variations. We fit a deterministic components model, the Holt-Winters algorithm, an ARIMA model and a structural time series model to the observations up to December 1992. Then we predict with each ofthe models and compare predicted with observed values. As expected, the results show that the detenninistic model is too rigid in this situation even if the within-sample fit is even better than for any of the other models considered. With respect to Holt-Winters predictions, they faH because they are not able to accornmodate outliers. Finally, ARIMA and structural models are shown to have very similar prediction performance, being flexible enough to predict reasonably well when there are changes in trend
Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters
Prediction intervals in State Space models can be obtained by assuming Gaussian innovations
and using the prediction equations of the Kalman filter, where the true parameters are
substituted by consistent estimates. This approach has two limitations. First, it does not
incorporate the uncertainty due to parameter estimation. Second, the Gaussianity assumption of
future innovations may be inaccurate. To overcome these drawbacks, Wall and Stoffer (2002)
propose to obtain prediction intervals by using a bootstrap procedure that requires the backward
representation of the model. Obtaining this representation increases the complexity of the
procedure and limits its implementation to models for which it exists. The bootstrap procedure
proposed by Wall and Stoffer (2002) is further complicated by fact that the intervals are
obtained for the prediction errors instead of for the observations. In this paper, we propose a
bootstrap procedure for constructing prediction intervals in State Space models that does not
need the backward representation of the model and is based on obtaining the intervals directly
for the observations. Therefore, its application is much simpler, without loosing the good
behavior of bootstrap prediction intervals. We study its finite sample properties and compare
them with those of the standard and the Wall and Stoffer (2002) procedures for the Local Level
Model. Finally, we illustrate the results by implementing the new procedure to obtain prediction
intervals for future values of a real time series
Estimation methods for stochastic volatility models: a survey
Although stochastic volatility (SV) models have an intuitive appeal, their empirical application has been limited mainly due to difficulties involved in their estimation. The main problem is that the likelihood function is hard to evaluate. However, recently, several new estimation methods have been introduced and the literature on SV models has grown substantially. In this article, we review this literature. We describe the main estimators of the parameters and the underlying volatilities focusing on their advantages and limitations both from the theoretical and empirical point of view. We complete the survey with an application of the most important procedures to the S&P 500 stock price index.Publicad
Properties of the sample autocorrelations of non-linear transformations in long memory stochastic volatility models
The autocorrelations of log-squared, squared, and absolute financial returns are often used to infer the dynamic properties of the underlying volatility. This article shows that, in the context of long-memory stochastic volatility models, these autocorrelations are smaller than the autocorrelations of the log volatility and so is the rate of decay for squared and absolute returns. Furthermore, the corresponding sample autocorrelations could have severe negative biases, making the identification of conditional heteroscedasticity and long memory a difficult task. Finally, we show that the power of some popular tests for homoscedasticity is larger when they are applied to absolute returns.Publicad
Finite sample properties of a QML estimator of Stochastic Volatility models with long memory
We analyse the finite sample properties of a QML estimator of LMSV models. We show up its poor performance for realistic parameter values. We discuss an identification problem when the volatility has a unit root. An empirical analysis illustrates our findings.Publicad
Unobserved component models with asymmetric conditional variances.
In this paper, unobserved component models with GARCH disturbances are extended to allow for asymmetric responses of conditional variances to positive and negative shocks. The asymmetric conditional variance is represented by a member of the QARCH class of models. The proposed model allows to distinguish whether the possibly asymmetric conditional heteroscedasticity affects the short run or the long-run disturbances or both. We analyse the statistical properties of the new model and derive the asymptotic and finite sample properties of a QML estimator of the parameters. We propose to identify the conditional heteroscedasticity using the correlogram of the squared auxiliary residuals. Its finite sample properties are also analysed. Finally, we ilustrate the results fitting the model to represent the dynamic evolution of daily series of financial returns and gold prices, as well as of monthly series of inflation. The behaviour of volatility in both types of series is different. The conditional heteroscedasticity mainly affects the short run component in financial returns while in the inflation series, the heteroscedastic ity appears in the long-run component. We find asymmetric effects in both types of variables
- …