624 research outputs found

    Conducting Truthful Surveys, Cheaply

    Get PDF
    We consider the problem of conducting a survey with the goal of obtaining an unbiased estimator of some population statistic when individuals have unknown costs (drawn from a known prior) for participating in the survey. Individuals must be compensated for their participation and are strategic agents, and so the payment scheme must incentivize truthful behavior. We derive optimal truthful mechanisms for this problem for the two goals of minimizing the variance of the estimator given a fixed budget, and minimizing the expected cost of the survey given a fixed variance goal

    Asymptotically Truthful Equilibrium Selection in Large Congestion Games

    Full text link
    Studying games in the complete information model makes them analytically tractable. However, large nn player interactions are more realistically modeled as games of incomplete information, where players may know little to nothing about the types of other players. Unfortunately, games in incomplete information settings lose many of the nice properties of complete information games: the quality of equilibria can become worse, the equilibria lose their ex-post properties, and coordinating on an equilibrium becomes even more difficult. Because of these problems, we would like to study games of incomplete information, but still implement equilibria of the complete information game induced by the (unknown) realized player types. This problem was recently studied by Kearns et al. and solved in large games by means of introducing a weak mediator: their mediator took as input reported types of players, and output suggested actions which formed a correlated equilibrium of the underlying game. Players had the option to play independently of the mediator, or ignore its suggestions, but crucially, if they decided to opt-in to the mediator, they did not have the power to lie about their type. In this paper, we rectify this deficiency in the setting of large congestion games. We give, in a sense, the weakest possible mediator: it cannot enforce participation, verify types, or enforce its suggestions. Moreover, our mediator implements a Nash equilibrium of the complete information game. We show that it is an (asymptotic) ex-post equilibrium of the incomplete information game for all players to use the mediator honestly, and that when they do so, they end up playing an approximate Nash equilibrium of the induced complete information game. In particular, truthful use of the mediator is a Bayes-Nash equilibrium in any Bayesian game for any prior.Comment: The conference version of this paper appeared in EC 2014. This manuscript has been merged and subsumed by the preprint "Robust Mediators in Large Games": http://arxiv.org/abs/1512.0269

    Fast Private Data Release Algorithms for Sparse Queries

    Full text link
    We revisit the problem of accurately answering large classes of statistical queries while preserving differential privacy. Previous approaches to this problem have either been very general but have not had run-time polynomial in the size of the database, have applied only to very limited classes of queries, or have relaxed the notion of worst-case error guarantees. In this paper we consider the large class of sparse queries, which take non-zero values on only polynomially many universe elements. We give efficient query release algorithms for this class, in both the interactive and the non-interactive setting. Our algorithms also achieve better accuracy bounds than previous general techniques do when applied to sparse queries: our bounds are independent of the universe size. In fact, even the runtime of our interactive mechanism is independent of the universe size, and so can be implemented in the "infinite universe" model in which no finite universe need be specified by the data curator

    Beating Randomized Response on Incoherent Matrices

    Full text link
    Computing accurate low rank approximations of large matrices is a fundamental data mining task. In many applications however the matrix contains sensitive information about individuals. In such case we would like to release a low rank approximation that satisfies a strong privacy guarantee such as differential privacy. Unfortunately, to date the best known algorithm for this task that satisfies differential privacy is based on naive input perturbation or randomized response: Each entry of the matrix is perturbed independently by a sufficiently large random noise variable, a low rank approximation is then computed on the resulting matrix. We give (the first) significant improvements in accuracy over randomized response under the natural and necessary assumption that the matrix has low coherence. Our algorithm is also very efficient and finds a constant rank approximation of an m x n matrix in time O(mn). Note that even generating the noise matrix required for randomized response already requires time O(mn)

    Exploiting Metric Structure for Efficient Private Query Release

    Get PDF
    We consider the problem of privately answering queries defined on databases which are collections of points belonging to some metric space. We give simple, computationally efficient algorithms for answering distance queries defined over an arbitrary metric. Distance queries are specified by points in the metric space, and ask for the average distance from the query point to the points contained in the database, according to the specified metric. Our algorithms run efficiently in the database size and the dimension of the space, and operate in both the online query release setting, and the offline setting in which they must in polynomial time generate a fixed data structure which can answer all queries of interest. This represents one of the first subclasses of linear queries for which efficient algorithms are known for the private query release problem, circumventing known hardness results for generic linear queries

    Selling Privacy at Auction

    Get PDF
    We initiate the study of markets for private data, though the lens of differential privacy. Although the purchase and sale of private data has already begun on a large scale, a theory of privacy as a commodity is missing. In this paper, we propose to build such a theory. Specifically, we consider a setting in which a data analyst wishes to buy information from a population from which he can estimate some statistic. The analyst wishes to obtain an accurate estimate cheaply. On the other hand, the owners of the private data experience some cost for their loss of privacy, and must be compensated for this loss. Agents are selfish, and wish to maximize their profit, so our goal is to design truthful mechanisms. Our main result is that such auctions can naturally be viewed and optimally solved as variants of multi-unit procurement auctions. Based on this result, we derive auctions for two natural settings which are optimal up to small constant factors: 1. In the setting in which the data analyst has a fixed accuracy goal, we show that an application of the classic Vickrey auction achieves the analyst's accuracy goal while minimizing his total payment. 2. In the setting in which the data analyst has a fixed budget, we give a mechanism which maximizes the accuracy of the resulting estimate while guaranteeing that the resulting sum payments do not exceed the analysts budget. In both cases, our comparison class is the set of envy-free mechanisms, which correspond to the natural class of fixed-price mechanisms in our setting. In both of these results, we ignore the privacy cost due to possible correlations between an individuals private data and his valuation for privacy itself. We then show that generically, no individually rational mechanism can compensate individuals for the privacy loss incurred due to their reported valuations for privacy.Comment: Extended Abstract appeared in the proceedings of EC 201

    Constrained Signaling in Auction Design

    Full text link
    We consider the problem of an auctioneer who faces the task of selling a good (drawn from a known distribution) to a set of buyers, when the auctioneer does not have the capacity to describe to the buyers the exact identity of the good that he is selling. Instead, he must come up with a constrained signalling scheme: a (non injective) mapping from goods to signals, that satisfies the constraints of his setting. For example, the auctioneer may be able to communicate only a bounded length message for each good, or he might be legally constrained in how he can advertise the item being sold. Each candidate signaling scheme induces an incomplete-information game among the buyers, and the goal of the auctioneer is to choose the signaling scheme and accompanying auction format that optimizes welfare. In this paper, we use techniques from submodular function maximization and no-regret learning to give algorithms for computing constrained signaling schemes for a variety of constrained signaling problems

    Differential Privacy for the Analyst via Private Equilibrium Computation

    Full text link
    We give new mechanisms for answering exponentially many queries from multiple analysts on a private database, while protecting differential privacy both for the individuals in the database and for the analysts. That is, our mechanism's answer to each query is nearly insensitive to changes in the queries asked by other analysts. Our mechanism is the first to offer differential privacy on the joint distribution over analysts' answers, providing privacy for data analysts even if the other data analysts collude or register multiple accounts. In some settings, we are able to achieve nearly optimal error rates (even compared to mechanisms which do not offer analyst privacy), and we are able to extend our techniques to handle non-linear queries. Our analysis is based on a novel view of the private query-release problem as a two-player zero-sum game, which may be of independent interest
    corecore