1,328 research outputs found

    Nonlinear viscoelastic characterization of structural adhesives

    Get PDF
    Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given

    The Lessons of “Lesson Drawing”: How the Obama Administration Attempted to Learn from Failure of the Clinton Health Plan

    Get PDF
    The article examines the role of historical insights in the creation of U.S. healthcare policy. Particular focus is given to the influence of former U.S. President Bill Clinton\u27s 1993-1994 attempts at healthcare reform on the policies of U.S. President Barack Obama. It is suggested that while the U.S. Patient Protection and Affordable Care act of 2010 was successful in many respects, the Obama administration\u27s efforts to avoid missteps taken with Clinton\u27s Health Security Act did not significantly aid and sometimes even hindered its progress. Details on the political strategy, policy design, and political rhetoric used by both administrations are presented. Other topics include partisan politics and the communication of policy goals to the public

    Electron transport in semiconducting carbon nanotubes with hetero-metallic contacts

    Full text link
    We present an atomistic self-consistent study of the electronic and transport properties of semiconducting carbon nanotube in contact with metal electrodes of different work functions, which shows simultaneous electron and hole doping inside the nanotube junction through contact-induced charge transfer. We find that the band lineup in the nanotube bulk region is determined by the effective work function difference between the nanotube channel and source/drain electrodes, while electron transmission through the SWNT junction is affected by the local band structure modulation at the two metal-nanotube interfaces, leading to an effective decoupling of interface and bulk effects in electron transport through nanotube junction devices.Comment: Higher quality figures available at http://www.albany.edu/~yx15212

    Interference effects in electronic transport through metallic single-wall carbon nanotubes

    Full text link
    In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed experimentally, that metallic nanotubes, strongly coupled to external electrodes, may act as coherent molecular waveguides for electronic transport. The experimental results were supported by theoretical analysis based on the scattering matrix approach. In this paper we analyze theoretically this problem using a real-space approach, which makes it possible to control quality of interface contacts. Electronic structure of the nanotube is taken into account within the tight-binding model. External electrodes and the central part (sample) are assumed to be made of carbon nanotubes, while the contacts between electrodes and the sample are modeled by appropriate on-site (diagonal) and hopping (off-diagonal) parameters. Conductance is calculated by the Green function technique combined with the Landauer formalism. In the plots displaying conductance {\it vs.} bias and gate voltages, we have found typical diamond structure patterns, similar to those observed experimentally. In certain cases, however, we have found new features in the patterns, like a double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.

    Computational Models of Adult Neurogenesis

    Full text link
    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of and adult brain. Here we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas.Comment: To appear Physica A, 7 page

    Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes

    Full text link
    We studied the temperature stability of the endohedral fullerene molecule, N@C60, inside single-wall carbon nanotubes using electron spin resonance spectroscopy. We found that the nitrogen escapes at higher temperatures in the encapsulated material as compared to its pristine, crystalline form. The temperature dependent spin-lattice relaxation time, T_1, of the encapsulated molecule is significantly shorter than that of the crystalline material, which is explained by the interaction of the nitrogen spin with the conduction electrons of the nanotubes.Comment: 5 pages, 4 figures, 1 tabl

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    Full text link
    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobility is an oscillatory function of density. This is due to the phenomenon of charge density pinning. Mobility changes occur due to the co-operative pinning and unpinning of the distribution. At high temperatures, we find that the electron-electron interaction reduces the mobility monotonically with density, but perhaps not as much as one might intuitively expect because the path summation favour the in-phase contributions to the mobility, i.e. the sequential paths in which the carriers have to wait for the one in front to exit and so on. The carrier interactions produce a frequency dependent mobility which is of the same order as the change in the dc mobility with density, i.e. it is a comparably weak effect. However, when combined with an injection barrier or intrinsic disorder, the interactions reduce the free volume and amplify disorder by making it non-local and this can explain the too early onset of frequency dependence in the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review

    Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation

    Full text link
    We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band-lineup is determined from first-principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200
    corecore