1,328 research outputs found
Nonlinear viscoelastic characterization of structural adhesives
Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given
The Lessons of “Lesson Drawing”: How the Obama Administration Attempted to Learn from Failure of the Clinton Health Plan
The article examines the role of historical insights in the creation of U.S. healthcare policy. Particular focus is given to the influence of former U.S. President Bill Clinton\u27s 1993-1994 attempts at healthcare reform on the policies of U.S. President Barack Obama. It is suggested that while the U.S. Patient Protection and Affordable Care act of 2010 was successful in many respects, the Obama administration\u27s efforts to avoid missteps taken with Clinton\u27s Health Security Act did not significantly aid and sometimes even hindered its progress. Details on the political strategy, policy design, and political rhetoric used by both administrations are presented. Other topics include partisan politics and the communication of policy goals to the public
Electron transport in semiconducting carbon nanotubes with hetero-metallic contacts
We present an atomistic self-consistent study of the electronic and transport
properties of semiconducting carbon nanotube in contact with metal electrodes
of different work functions, which shows simultaneous electron and hole doping
inside the nanotube junction through contact-induced charge transfer. We find
that the band lineup in the nanotube bulk region is determined by the effective
work function difference between the nanotube channel and source/drain
electrodes, while electron transmission through the SWNT junction is affected
by the local band structure modulation at the two metal-nanotube interfaces,
leading to an effective decoupling of interface and bulk effects in electron
transport through nanotube junction devices.Comment: Higher quality figures available at http://www.albany.edu/~yx15212
Interference effects in electronic transport through metallic single-wall carbon nanotubes
In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed
experimentally, that metallic nanotubes, strongly coupled to external
electrodes, may act as coherent molecular waveguides for electronic transport.
The experimental results were supported by theoretical analysis based on the
scattering matrix approach. In this paper we analyze theoretically this problem
using a real-space approach, which makes it possible to control quality of
interface contacts. Electronic structure of the nanotube is taken into account
within the tight-binding model. External electrodes and the central part
(sample) are assumed to be made of carbon nanotubes, while the contacts between
electrodes and the sample are modeled by appropriate on-site (diagonal) and
hopping (off-diagonal) parameters. Conductance is calculated by the Green
function technique combined with the Landauer formalism. In the plots
displaying conductance {\it vs.} bias and gate voltages, we have found typical
diamond structure patterns, similar to those observed experimentally. In
certain cases, however, we have found new features in the patterns, like a
double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.
Computational Models of Adult Neurogenesis
Experimental results in recent years have shown that adult neurogenesis is a
significant phenomenon in the mammalian brain. Little is known, however, about
the functional role played by the generation and destruction of neurons in the
context of and adult brain. Here we propose two models where new projection
neurons are incorporated. We show that in both models, using incorporation and
removal of neurons as a computational tool, it is possible to achieve a higher
computational efficiency that in purely static, synapse-learning driven
networks. We also discuss the implication for understanding the role of adult
neurogenesis in specific brain areas.Comment: To appear Physica A, 7 page
Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes
We studied the temperature stability of the endohedral fullerene molecule,
N@C60, inside single-wall carbon nanotubes using electron spin resonance
spectroscopy. We found that the nitrogen escapes at higher temperatures in the
encapsulated material as compared to its pristine, crystalline form. The
temperature dependent spin-lattice relaxation time, T_1, of the encapsulated
molecule is significantly shorter than that of the crystalline material, which
is explained by the interaction of the nitrogen spin with the conduction
electrons of the nanotubes.Comment: 5 pages, 4 figures, 1 tabl
Conductance of Distorted Carbon Nanotubes
We have calculated the effects of structural distortions of armchair carbon
nanotubes on their electrical transport properties. We found that the bending
of the nanotubes decreases their transmission function in certain energy ranges
and leads to an increased electrical resistance. Electronic structure
calculations show that these energy ranges contain localized states with
significant - hybridization resulting from the increased curvature
produced by bending. Our calculations of the contact resistance show that the
large contact resistances observed for SWNTs are likely due to the weak
coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR
Interrupteur optique réversible constitué d'une monocouche auto-assemblée de dérivés thiophène-azobenzène
Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems
The many-body Monte Carlo method is used to evaluate the frequency dependent
conductivity and the average mobility of a system of hopping charges,
electronic or ionic on a one-dimensional chain or channel of finite length. Two
cases are considered: the chain is connected to electrodes and in the other
case the chain is confined giving zero dc conduction. The concentration of
charge is varied using a gate electrode. At low temperatures and with the
presence of an injection barrier, the mobility is an oscillatory function of
density. This is due to the phenomenon of charge density pinning. Mobility
changes occur due to the co-operative pinning and unpinning of the
distribution. At high temperatures, we find that the electron-electron
interaction reduces the mobility monotonically with density, but perhaps not as
much as one might intuitively expect because the path summation favour the
in-phase contributions to the mobility, i.e. the sequential paths in which the
carriers have to wait for the one in front to exit and so on. The carrier
interactions produce a frequency dependent mobility which is of the same order
as the change in the dc mobility with density, i.e. it is a comparably weak
effect. However, when combined with an injection barrier or intrinsic disorder,
the interactions reduce the free volume and amplify disorder by making it
non-local and this can explain the too early onset of frequency dependence in
the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review
Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation
We present a systematic analysis of the effect of radial deformation on the
atomic and electronic structure of zigzag and armchair single wall carbon
nanotubes using the first principle plane wave method. The nanotubes were
deformed by applying a radial strain, which distorts the circular cross section
to an elliptical one. The atomic structure of the nanotubes under this strain
are fully optimized, and the electronic structure is calculated
self-consistently to determine the response of individual bands to the radial
deformation. The band gap of the insulating tube is closed and eventually an
insulator-metal transition sets in by the radial strain which is in the elastic
range. Using this property a multiple quantum well structure with tunable and
reversible electronic structure is formed on an individual nanotube and its
band-lineup is determined from first-principles. The elastic energy due to the
radial deformation and elastic constants are calculated and compared with
classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200
- …
