41 research outputs found

    Displacement Damage dose and DLTS Analyses on Triple and Single Junction solar cells irradiated with electrons and protons

    Full text link
    Space solar cells radiation hardness is of fundamental importance in view of the future missions towards harsh radiation environment (like e.g. missions to Jupiter) and for the new spacecraft using electrical propulsion. In this paper we report the radiation data for triple junction (TJ) solar cells and related component cells. Triple junction solar cells, InGaP top cells and GaAs middle cells degrade after electron radiation as expected. With proton irradiation, a high spread in the remaining factors was observed, especially for the TJ and bottom cells. Very surprising was the germanium bottom junction that showed very high degradation after protons whereas it is quite stable against electrons. Radiation results have been analyzed by means of the Displacement Damage Dose method and DLTS spectroscopy.Comment: Abstract accepted for poster session at 2017 IEEE Nuclear and Space Radiation Effects Conference, July 17-21, New Orlean

    31% European InGaP/GaAs/InGaAs Solar Cells for Space Application

    Get PDF
    We report a triple junction InGaP/GaAs/InGaNAs solar cell with efficiency of ~31% at AM0, 25 °C fabricated using a combined molecular beam epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD) processes. The prototype cells comprise of InGaNAs (Indium Gallium Nitride Arsenide) bottom junction grown on a GaAs (Gallium Arsenide) substrate by MBE and middle and top junctions deposited by MOCVD. Repeatable cell characteristics and uniform efficiency pattern over 4-inch wafers were obtained. Combining the advantages offered by MBE and MOCVD opens a new perspective for fabrication of high-efficiency space tandem solar cells with three or more junctions. Results of radiation resistance of the sub-cells are also presented and critically evaluated to achieve high efficiency in EOL conditions
    corecore