363 research outputs found

    CP Violating Solitons in the Early Universe

    Get PDF
    Solitons in extensions of the Standard Model can serve as localized sources of CP violation. Depending on their stability properties, they may serve either to create or to deplete the baryon asymmetry. The conditions for existence of a particular soliton candidate, the membrane solution of the two-Higgs model, are presented. In the generic case, investigated by Bachas and Tomaras, membranes exist and are metastable for a wide range of parameters. For the more viable supersymmetric case, it is shown that the present-day existence of CP-violating membranes is experimentally excluded, but preliminary studies suggest that they may have existed in the early universe soon after the electroweak phase transition, with important consequences for the baryon asymmetry of the universe.Comment: Talk given by Ola Tornkvist, to appear in the proceedings of Fundamental Physics at the Birth of the Universe, II, in Rome, Italy, 19-24 May 1997. Revtex, 7 pages, 1 postscript figure, uses epsf.tex, aps.sty, prl.sty, preprint.sty. Preprint number correcte

    Clockwork Inflation

    Full text link
    We investigate the recently proposed clockwork mechanism delivering light degrees of freedom with suppressed interactions and show, with various examples, that it can be efficiently implemented in inflationary scenarios to generate flat inflaton potentials and small density perturbations without fine-tunings. We also study the clockwork graviton in de Sitter and, interestingly, we find that the corresponding clockwork charge is site-dependent. As a consequence, the amount of tensor modes is generically suppressed with respect to the standard cases where the clockwork set-up is not adopted. This point can be made a virtue in resurrecting models of inflation which were supposed to be ruled out because of the excessive amount of tensor modes from inflation.Comment: 19 pages, 1 fugur

    On the Inflationary Perturbations of Massive Higher-Spin Fields

    Full text link
    Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the possibility of new observational signatures from inflation.Comment: 22 page

    Recent Progress in Baryogenesis

    Get PDF
    We provide an up to date account of progress in understanding the origin of the observed baryon asymmetry of the universe. While our primary goal is to be current, we have attempted to give a pedagogical introduction to the primary areas of research in this field, giving a detailed description of the different scenarios. The very recent developments in GUT baryogenesis, leptogenesis, electroweak baryogenesis and the Affleck-Dine mechanism are presented. In particular, we focus on specific particle physics implementations, mostly in the context of supersymmetry, which lead to specific testable predictions.Comment: 39 pages. Invited chapter to appear in Annual Review of Nuclear and Particle Science, December 199

    The Halo Mass Function from Excursion Set Theory with a Non-Gaussian Trispectrum

    Get PDF
    A sizeable level of non-Gaussianity in the primordial cosmological perturbations may be induced by a large trispectrum, i.e. by a large connected four-point correlation function. We compute the effect of a primordial non-Gaussian trispectrum on the halo mass function, within excursion set theory. We use the formalism that we have developed in a previous series of papers and which allows us to take into account the fact that, in the presence of non-Gaussianity, the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-markovian. In the large mass limit, the leading-order term that we find agrees with the leading-order term of the results found in the literature using a more heuristic Press-Schecther (PS)-type approach. Our approach however also allows us to evaluate consistently the subleading terms, which depend not only on the four-point cumulant but also on derivatives of the four-point correlator, and which cannot be obtained within non-Gaussian extensions of PS theory. We perform explicitly the computation up to next-to-leading order.Comment: LaTeX file, 15 page

    BMS in Cosmology

    Full text link
    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.Comment: 33 pages, 4 figure

    On Resumming Inflationary Perturbations beyond One-loop

    Full text link
    It is well known that the correlation functions of a scalar field in a quasi-de Sitter space exhibit at the loop level cumulative infra-red effects proportional to the total number of e-foldings of inflation. Using the in-in formalism, we explore the behavior of these infra-red effects in the large N limit of an O(N) invariant scalar field theory with quartic self-interactions. By resumming all higher-order loop diagrams non-perturbatively, we show that the connected four-point correlation function, which is a signal of non-Gaussianity, is non-perturbatively enhanced with respect to its tree-level value.Comment: 17 pages, v2: minor corrections, to appear in jca
    • …
    corecore