1,521 research outputs found

    A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals

    Get PDF
    Abstract. MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH4 and N2O. To tackle this problem, a Tikhonov regularization scheme has been implemented in the retrieval algorithm. The applied regularization is however rather weak in order to preserve the vertical resolution of the profiles. In this paper we present a self-adapting and altitude-dependent regularization approach that detects whether the analyzed observations contain information about small-scale profile features, and determines the strength of the regularization accordingly. The objective of the method is to smooth out artificial oscillations as much as possible, while preserving the fine detail features of the profile when related information is detected in the observations. The proposed method is checked for self consistency, its performance is tested on MIPAS observations and compared with that of some other regularization schemes available in the literature. In all the considered cases the proposed scheme achieves a good performance, thanks to its altitude dependence and to the constraints employed, which are specific of the inversion problem under consideration. The proposed method is generally applicable to iterative Gauss-Newton algorithms for the retrieval of vertical distribution profiles from atmospheric remote sounding measurements

    Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    Get PDF
    Abstract. The variance-covariance matrix (VCM) and the averaging kernel matrix (AKM) are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead

    Improved overall survival in dendritic cell vaccination-induced immunoreactive subgroup of advanced melanoma patients

    Get PDF
    BACKGROUND: We present our experience of therapeutic vaccination using dendritic cells (DC) pulsed with autologous tumor antigens in patients with advanced melanoma. METHODS: Twenty-one pretreated advanced melanoma patients were vaccinated with autologous DC pulsed with 100 μg/ml of autologous-tumor-lysate (ATL) or – homogenate (ATH) and 50 μg/ml of keyhole limpet hemocyanin (KLH). The first 8 patients were treated subcutaneously or intradermally with immature-DC (iDC) (range 4.5 – 82 × 10(6)) and the remaining 13 intradermally with in vitro matured DC (mDC) (range 1.2–26 × 10(6)). Subcutaneous interleukin-2 (3 × 10(6 )IU) was administered from days 3 to 7 of each treatment cycle. RESULTS: Three of the 8 iDC patients obtained stabilizations (SD), each of 6 months' duration. The 13 mDC patients showed 1 complete response (8 months), 1 partial response (3 months), 2 mixed responses (6 and 12 months) and 3 SD (9, 7+, and 3+ months). Overall responses (OR) were observed in 4/21 (19%) patients, or 4/13 (30.7%) considering mDC treatment only. 10/21 (47.6%) patients showed non progressive disease (NPD), with 7/13 (53.8%) cases of NPD for mDC-treated patients. No major toxicities were observed. The positive delayed-type hypersensitivity (DTH) test to ATL/ATH and/or KLH correlated with increased overall survival (OS). Median OS was 24 months (range 3 – 45) for the 10 DTH-positive (1 iDC and 9 mDC) and 5 months (range 3–14) for the 11 DTH-negative patients (P < 0.001). The in vitro evaluation of gamma IFN-secreting T-cells in 10 patients showed good correlation with both DTH (75%) and clinical outcome (70%). CONCLUSION: Vaccination using DC pulsed with ATL/ATH and KLH in advanced melanoma patients is well tolerated and can induce a clinical response, especially when mDC are used. Successful immunization, verified by positive DTH, leads to longer survival

    Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population

    Get PDF
    The EAT–Lancet Commission has proposed a global benchmark diet to guide the shift towards healthy and sustainable dietary patterns. Yet it is unclear whether consumers’ choices are convergent with those guidelines. Applying an advanced statistical analysis, we mapped the diet gap of 15 essential foods in 172 countries from 1961 to 2018. We found that countries at the highest level of development have an above-optimal consumption of animal products, fats and sugars but a sub-optimal consumption of legumes, nuts and fruits. Countries suffering from limited socio-economic progress primarily rely on carbohydrates and starchy roots. Globally, a gradual change towards healthy and sustainable dietary targets can be observed for seafood, milk products, poultry and vegetable oils. We show that if all countries adopted the EAT–Lancet diet, the water footprint would fall by 12% at a global level but increase for nearly 40% of the world’s population

    Charting out the future agricultural trade and its impact on water resources

    Get PDF
    International agricultural trade triggers inter-dependency among distant countries, not only in economic terms but also under an environmental perspective. Agricultural trade has been shown to drive environmental threats pertaining to biodiversity loss and depletion and pollution of freshwater resources. Meanwhile, trade can also encourage production where it is most efficient, hence minimizing the use of natural resources required by agriculture. In this study, we provide a country-level assessment of the future international trade for 6 primary crops and 3 animal products composing 70% of the human diet caloric content. We set up four variegate socio-economic scenarios with different level of economic developments, diets habits, population growth dynamics, and levels of market liberalization. Results show that the demand of agricultural goods and the correspondent trade flow will increase with respect to current levels by 10–50% and 74–178% by 2050, respectively. The largest increase in the amount of traded goods is expected under the Economic Optimism scenario that will see an average trade flow of 2830 kcal/cap/day (i.e., nearly doubling the current per-capita flow). Most of the increase will be driven by the trade of crops for animal feeding, particularly maize will be the most traded crop. The trade networks architecture in 2050 and 2080 will be very different from the one we actually know, with a clear shift of the trade pole from the Western toward the Eastern economies. The dramatic changes of global food-sources and trade patterns will jeopardize the water resources of new regions while exacerbating the pressure in those areas that will continue serving food also in the future. In spite of this, trade may annually save around 40–60 m3 of water per person, compared to a situation where countries are self-sufficient

    Expedite computation of arbitrary-order nonlinear optical properties with native electronic interactions in the time domain

    Full text link
    We adapted a recently proposed time-domain framework to characterize the optical response of interacting electronic systems in order to expedite its computation without compromise in quantitative or qualitative accuracy at the microscopic level. With reliable parameterizations of Hamiltonians and interactions, our formulation allows for increased economy and flexibility in calculating the optical response functions to fields of arbitrary temporal shape and strength. For example, the computation of high-harmonic susceptibilities to arbitrary order becomes straightforward within a unified scheme that natively takes into account excitonic effects, as well as deviations of the electronic system from equilibrium under a strong field. Given that two-dimensional semiconductors are currently of much interest for their strong optical nonlinearities, largely defined by excitons, we demonstrate the approach by computing the frequency-dependent susceptibilities of monolayer MoS2_2 and hexagonal boron nitride up to the third-harmonic. In the latter, a two-band model brings further insight on the role of intra-band transitions and the nonequilibrium state of the system when computing even-order response, like the second-harmonic susceptibility. Being grounded on a generic non-equilibrium many-body perturbation theory, this framework allows extensions to handle more generic interaction models or the realistic description of electronic processes taking place at ultrafast time scales.Comment: 20 pages, 9 figure

    Pulsar J1411+2551: A Low Mass New Double Neutron Star System

    Get PDF
    In this work, we report the discovery and characterization of PSR J1411+2551, a new binary pulsar discovered in the Arecibo 327 MHz Drift Pulsar Survey. Our timing observations of the radio pulsar in the system span a period of about 2.5 years. This timing campaign allowed a precise measurement of its spin period (62.4 ms) and its derivative (9.6 ±\pm 0.7) ×10−20 s s−1\times 10^{-20}\, \rm s\, s^{-1}; from these, we derive a characteristic age of ∼10 \sim 10\,Gyr and a surface magnetic field strength of 2.5 ×109\times 10^{9} G. These numbers indicate that this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. The system has an eccentric (e = 0.17e\, = \, 0.17) 2.61 day orbit. This eccentricity allows a highly significant measurement of the rate of advance of periastron, ω˙=0.07686±0.00046∘ yr−1\dot{\omega} = 0.07686 \pm 0.00046 ^{\circ}~{\rm yr}^{-1}. Assuming general relativity accurately models the orbital motion, this implies a total system mass M = 2.538±0.022M⊙2.538 \pm 0.022 M_{\odot}. The minimum companion mass is 0.92 M⊙0.92\, M_{\odot} and the maximum pulsar mass is 1.62 M⊙1.62\, M_{\odot}. The large companion mass and the orbital eccentricity suggest that PSR J1411+2551 is a double neutron star system; the lightest known to date including the DNS merger GW 170817. Furthermore, the relatively low orbital eccentricity and small proper motion limits suggest that the second supernova had a relatively small associated kick; this and the low system mass suggest that it was an ultra-stripped supernova.Comment: Accepted for publication in APJ letter
    • …