29 research outputs found

    Autoxidation of Heterocyclic Aminals

    No full text
    The autoxidation reactions of 2-acyl-2,3-dihydroquinazolin-4­(1<i>H</i>)-ones <b>4a</b> and <b>5a</b> and 2,2′-bis­(dihydroquinazolinone) <b>6a</b> are described. These reactions generate aminyl radicals that undergo β-C–C cleavage, and subsequent reactions of the resulting C-based radicals with O<sub>2</sub> lead to diverse products with good selectivity, depending on the structure of the substrate. Oxidation of <b>4a</b>, in which the 2-acyl group is part of a cyclic acenaphthenone unit, yields a heterocyclic <i>C</i>-hydroperoxylaminal via 1,2-acyl migration. Oxidation of <b>5a</b>, which contains a 2-acetyl group, yields peracetic acid and a quinazolinone product. Oxidation of <b>6a</b> forms a bis­(quinazolinone) by net dehydrogenation

    Hydrogen Bonding Behavior of Amide-Functionalized α‑Diimine Palladium Complexes

    No full text
    A class of (<i>N,N</i>′-diaryl-α-diimine)­Pd complexes bearing amide substituents on the N-aryl rings is described. Hydrogen bonding interactions involving the amide groups influence the structures, isomer distributions, and ligand coordination behavior of these compounds. The amide-functionalized α-diimine ligands (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4a</b>), (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-(C­(O)­NMe<sub>2</sub>)<sub>2</sub>-Ph) (<b>4b</b>), and (2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph)­NCMeCMeN­(2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4c</b>) were prepared by condensation reactions of 2,3-butanedione and the appropriate anilines. The attempted preparation of (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2-C­(O)­NHMe-6-<sup>i</sup>Pr-Ph) (<b>4d</b>) yielded the corresponding 1,2-dihydroquinazolinone derivative <b>4d</b>′ formed by nucleophilic attack of the amide nitrogen at the proximal imine carbon. <b>4a</b> and <b>4b</b> react with (cod)­PdMeCl to yield square planar (α-diimine)­PdMeCl complexes <b>5a</b>,<b>a</b>′ and <b>5b</b>,<b>b</b>′, respectively, which exist as two isomers that differ in the orientation (trans/cis) of the Pd–Me ligand and the amide-substituted arylimine unit. <b>4c</b> reacts with (MeCN)<sub>2</sub>PdCl<sub>2</sub> and (cod)­PdMeCl to yield (<b>4c</b>)­PdCl<sub>2</sub> (<b>6c-</b><i><b>anti</b></i>,<i><b>syn</b></i>) and (<b>4c</b>)­PdMeCl (<b>5c-</b><i><b>anti</b></i>,<i><b>syn</b></i>), which exhibit anti/syn isomerism due to hindered rotation of the C<sub>aryl</sub>–N bonds. In the solid state, the amide oxygen atoms in <b>6c-</b><i><b>anti</b></i> and <b>5c-</b><i><b>syn</b></i> engage in hydrogen bonding with cocrystallized CH<sub>2</sub>Cl<sub>2</sub> solvent molecules. <b>4d</b>′ reacts with (MeCN)<sub>2</sub>PdCl<sub>2</sub> via ring-opening metalation to afford the α-diimine complex (<b>4d</b>)­PdCl<sub>2</sub> (<b>6d</b>). Transmetalation of <b>6d</b> with SnMe<sub>4</sub> yields (<b>4d</b>)­PdMeCl (<b>5d</b>,<b>d</b>′) as a mixture of trans and cis isomers. The reaction of <b>5d</b>,<b>d</b>′ with AgOAc yields (<b>4d</b>)­PdMe­(OAc) (<b>7d</b>) as a single isomer in which the Pd–Me group is trans to the amide-functionalized arylimine unit. <b>5d</b>, <b>6d</b>, and <b>7d</b> exhibit intramolecular N–H···Cl and N–H···O hydrogen bonding interactions involving the amide NH units. The reactions of <b>5a</b>,<b>a</b>′, <b>5c-</b><i><b>anti</b></i>, and <b>5d</b>,<b>d</b>′ with AgSbF<sub>6</sub> in the presence of pyrazole yield the corresponding (α-diimine)­PdMe­(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> salts (<b>8a</b>,<b>c</b>,<b>d</b>; pz = pyrazole), which exhibit an intramolecular hydrogen bond between the amide oxygen and the pyrazole NH unit. <b>8a</b>,<b>c</b>,<b>d</b> undergo partial dissociation of pyrazole in CD<sub>3</sub>CN solution to generate the corresponding CD<sub>3</sub>CN complexes <b>9a</b>,<b>c</b>,<b>d</b>. The non-hydrogen-bonded complex {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}­PdMe­(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>8e</b>) and its pyrazole dissociation product {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}­PdMe­(CD<sub>3</sub>CN)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>9e</b>) were generated in a similar fashion. The pyrazole dissociation constants, <i>K</i><sub>eq</sub> = [(α-diimine)­PdMe­(CD<sub>3</sub>CN)<sup>+</sup>] × [pz] × [(α-diimine)­PdMe­(pz)<sup>+</sup>]<sup>−1</sup>, vary in the order <b>8e</b> > <b>8d</b> > <b>8a</b> > <b>8c</b>, span more than 2 orders of magnitude, and reflect the enhancement of pyrazole binding in <b>8a</b>,<b>c</b>,<b>d</b> by amide–pyrazole hydrogen bonding. The intramolecular hydrogen bonding in <b>8c</b> strengthens pyrazole binding by a factor of ca. 120 (i.e., ΔΔ<i>G</i> = 2.8(1) kcal mol<sup>–1</sup>) relative to the case of <b>8e</b>

    Hydrogen Bonding Behavior of Amide-Functionalized α‑Diimine Palladium Complexes

    No full text
    A class of (<i>N,N</i>′-diaryl-α-diimine)­Pd complexes bearing amide substituents on the N-aryl rings is described. Hydrogen bonding interactions involving the amide groups influence the structures, isomer distributions, and ligand coordination behavior of these compounds. The amide-functionalized α-diimine ligands (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4a</b>), (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-(C­(O)­NMe<sub>2</sub>)<sub>2</sub>-Ph) (<b>4b</b>), and (2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph)­NCMeCMeN­(2-C­(O)­NMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4c</b>) were prepared by condensation reactions of 2,3-butanedione and the appropriate anilines. The attempted preparation of (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2-C­(O)­NHMe-6-<sup>i</sup>Pr-Ph) (<b>4d</b>) yielded the corresponding 1,2-dihydroquinazolinone derivative <b>4d</b>′ formed by nucleophilic attack of the amide nitrogen at the proximal imine carbon. <b>4a</b> and <b>4b</b> react with (cod)­PdMeCl to yield square planar (α-diimine)­PdMeCl complexes <b>5a</b>,<b>a</b>′ and <b>5b</b>,<b>b</b>′, respectively, which exist as two isomers that differ in the orientation (trans/cis) of the Pd–Me ligand and the amide-substituted arylimine unit. <b>4c</b> reacts with (MeCN)<sub>2</sub>PdCl<sub>2</sub> and (cod)­PdMeCl to yield (<b>4c</b>)­PdCl<sub>2</sub> (<b>6c-</b><i><b>anti</b></i>,<i><b>syn</b></i>) and (<b>4c</b>)­PdMeCl (<b>5c-</b><i><b>anti</b></i>,<i><b>syn</b></i>), which exhibit anti/syn isomerism due to hindered rotation of the C<sub>aryl</sub>–N bonds. In the solid state, the amide oxygen atoms in <b>6c-</b><i><b>anti</b></i> and <b>5c-</b><i><b>syn</b></i> engage in hydrogen bonding with cocrystallized CH<sub>2</sub>Cl<sub>2</sub> solvent molecules. <b>4d</b>′ reacts with (MeCN)<sub>2</sub>PdCl<sub>2</sub> via ring-opening metalation to afford the α-diimine complex (<b>4d</b>)­PdCl<sub>2</sub> (<b>6d</b>). Transmetalation of <b>6d</b> with SnMe<sub>4</sub> yields (<b>4d</b>)­PdMeCl (<b>5d</b>,<b>d</b>′) as a mixture of trans and cis isomers. The reaction of <b>5d</b>,<b>d</b>′ with AgOAc yields (<b>4d</b>)­PdMe­(OAc) (<b>7d</b>) as a single isomer in which the Pd–Me group is trans to the amide-functionalized arylimine unit. <b>5d</b>, <b>6d</b>, and <b>7d</b> exhibit intramolecular N–H···Cl and N–H···O hydrogen bonding interactions involving the amide NH units. The reactions of <b>5a</b>,<b>a</b>′, <b>5c-</b><i><b>anti</b></i>, and <b>5d</b>,<b>d</b>′ with AgSbF<sub>6</sub> in the presence of pyrazole yield the corresponding (α-diimine)­PdMe­(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> salts (<b>8a</b>,<b>c</b>,<b>d</b>; pz = pyrazole), which exhibit an intramolecular hydrogen bond between the amide oxygen and the pyrazole NH unit. <b>8a</b>,<b>c</b>,<b>d</b> undergo partial dissociation of pyrazole in CD<sub>3</sub>CN solution to generate the corresponding CD<sub>3</sub>CN complexes <b>9a</b>,<b>c</b>,<b>d</b>. The non-hydrogen-bonded complex {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}­PdMe­(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>8e</b>) and its pyrazole dissociation product {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)­NCMeCMeN­(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}­PdMe­(CD<sub>3</sub>CN)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>9e</b>) were generated in a similar fashion. The pyrazole dissociation constants, <i>K</i><sub>eq</sub> = [(α-diimine)­PdMe­(CD<sub>3</sub>CN)<sup>+</sup>] × [pz] × [(α-diimine)­PdMe­(pz)<sup>+</sup>]<sup>−1</sup>, vary in the order <b>8e</b> > <b>8d</b> > <b>8a</b> > <b>8c</b>, span more than 2 orders of magnitude, and reflect the enhancement of pyrazole binding in <b>8a</b>,<b>c</b>,<b>d</b> by amide–pyrazole hydrogen bonding. The intramolecular hydrogen bonding in <b>8c</b> strengthens pyrazole binding by a factor of ca. 120 (i.e., ΔΔ<i>G</i> = 2.8(1) kcal mol<sup>–1</sup>) relative to the case of <b>8e</b>

    Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands

    No full text
    The synthesis of the phosphine-cyclopentanesulfonate pro-ligands Li/K­[2-PPh<sub>2</sub>-cyclopentanesulfonate] (Li/K­[<b>2a</b>]), Li/K­[2-P­(2-OMe-Ph)<sub>2</sub>-cyclopentanesulfonate] (Li/K­[<b>2b</b>]), and H­[<b>2b</b>], and the corresponding Pd­(II) alkyl complexes (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2a</b>)­PdMe­(pyridine) (<b>3a</b>) and (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2b</b>)­PdMe­(pyridine) (<b>3b</b>) is described. The sulfonate-bridged base-free dimer {(<b>2b</b>)­PdMe}<sub>2</sub> (<b>4b</b>) was synthesized by abstraction of pyridine from <b>3b</b> using B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. The borane-coordinated base-free dimer [{<b>2b·</b>B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>}­PdMe]<sub>2</sub> (<b>5b</b>), in which B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> binds to a sulfonate oxygen, was prepared by addition of 1 equiv of B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> per Pd to <b>4b</b> or addition of 2 equiv of B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> to <b>3b</b>. Compounds <b>3b</b>, <b>4b</b>, and <b>5b</b> polymerize ethylene with low activity (up to 210 kg mol<sup>–1</sup> h<sup>–1</sup> at 250 psi and 80 °C) to linear polyethylene (<i>M</i><sub>n</sub> = 1950–5250 Da) with predominantly internal olefin placements. <b>3b</b> and <b>4b</b> copolymerize ethylene with methyl acrylate to linear copolymers that contain up to 11.7 mol % methyl acrylate, which is incorporated as −CH<sub>2</sub>CH­(CO<sub>2</sub>Me)­CH<sub>2</sub>– (80%) in-chain units and −CH<sub>2</sub>CH­(CO<sub>2</sub>Me)­Me (8%) and −CH<sub>2</sub>CHCH­(CO<sub>2</sub>Me) (12%) chain-end units. <b>3b</b> and <b>4b</b> also copolymerize ethylene with vinyl fluoride to linear copolymers that contain up to 0.41 mol % vinyl fluoride, which is incorporated as −CH<sub>2</sub>CHFCH<sub>2</sub>– (∼80%) in-chain units and −CH<sub>2</sub>CF<sub>2</sub>H (7%), −CH<sub>2</sub>CHFCH<sub>3</sub> (5%), and −CH<sub>2</sub>CH<sub>2</sub>F (8%) chain-end units. Complexes <b>3b</b> and <b>4b</b> are more stable and active in ethylene polymerization than analogous (PAr<sub>2</sub>-<i>CH</i><sub>2</sub><i>CH</i><sub>2</sub>SO<sub>3</sub>)­PdR catalysts, but are less active than analogous (PAr<sub>2</sub>-<i>arene</i>sulfonate)­PdR catalysts. Low-temperature NMR studies show that <b>4b</b> reacts with ethylene below −10 °C to form the ethylene adduct <i>cis</i>-<i>P</i>,<i>R</i>-(<b>2b</b>)­PdMe­(ethylene) (<b>7b</b>), which undergoes ethylene insertion at 5 °C. DFT calculations for a model (PMe<sub>2</sub>-cyclopentanesulfonate)­Pd­(Pr)­(ethylene) species show that ethylene insertion proceeds by <i>cis</i>-<i>P</i>,<i>R</i>/<i>trans</i>-<i>P</i>,<i>R</i> isomerization followed by migratory insertion, and that the lower activity of <b>3b</b> and <b>4b</b> vis-à-vis analogous (PAr<sub>2</sub>-arenesulfonate)­PdR catalysts results from a higher barrier for migratory insertion of the <i>trans</i>-<i>P</i>,<i>R</i> isomer

    Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide

    No full text
    The reaction of CO<sub>2</sub> with (PDI)­FeMe (<b>1</b>), (PDI)­Fe­(Me)­PMe<sub>3</sub> (<b>1-PMe</b><sub><b>3</b></sub>) and [(PDI)­FeMe]­[BPh<sub>4</sub>] (<b>2</b>, PDI = 2,6-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>–C<sub>6</sub>H<sub>3</sub>–NCMe)<sub>2</sub>–C<sub>5</sub>H<sub>3</sub>N) generates (PDI)­Fe­OAc (<b>3</b>), (PDI)­Fe­(OAc)­PMe<sub>3</sub> (<b>3-PMe</b><sub><b>3</b></sub>), and [(PDI)­FeOAc]­[BPh<sub>4</sub>] (<b>4</b>), respectively. Kinetic data and solvent effects provide evidence that these reactions occur by precoordination of CO<sub>2</sub> to the Fe center regardless of the charge state and thus favor an insertion mechanism for carboxylation. Carboxylation of <b>1-PMe</b><sub><b>3</b></sub> requires initial dissociation of PMe<sub>3</sub> to generate <b>1</b>, which reacts with CO<sub>2</sub>; <b>1-PMe</b><sub><b>3</b></sub> itself does not react directly with CO<sub>2</sub>. CO<sub>2</sub> reacts 5 times faster with neutral <b>1</b> than with cationic <b>2</b> (at 0 °C), which is ascribed to the higher nucleophilicity of the Fe–Me group in <b>1</b>

    Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide

    No full text
    The reaction of CO<sub>2</sub> with (PDI)­FeMe (<b>1</b>), (PDI)­Fe­(Me)­PMe<sub>3</sub> (<b>1-PMe</b><sub><b>3</b></sub>) and [(PDI)­FeMe]­[BPh<sub>4</sub>] (<b>2</b>, PDI = 2,6-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>–C<sub>6</sub>H<sub>3</sub>–NCMe)<sub>2</sub>–C<sub>5</sub>H<sub>3</sub>N) generates (PDI)­Fe­OAc (<b>3</b>), (PDI)­Fe­(OAc)­PMe<sub>3</sub> (<b>3-PMe</b><sub><b>3</b></sub>), and [(PDI)­FeOAc]­[BPh<sub>4</sub>] (<b>4</b>), respectively. Kinetic data and solvent effects provide evidence that these reactions occur by precoordination of CO<sub>2</sub> to the Fe center regardless of the charge state and thus favor an insertion mechanism for carboxylation. Carboxylation of <b>1-PMe</b><sub><b>3</b></sub> requires initial dissociation of PMe<sub>3</sub> to generate <b>1</b>, which reacts with CO<sub>2</sub>; <b>1-PMe</b><sub><b>3</b></sub> itself does not react directly with CO<sub>2</sub>. CO<sub>2</sub> reacts 5 times faster with neutral <b>1</b> than with cationic <b>2</b> (at 0 °C), which is ascribed to the higher nucleophilicity of the Fe–Me group in <b>1</b>

    (α-Diimine)nickel Complexes That Contain Menthyl Substituents: Synthesis, Conformational Behavior, and Olefin Polymerization Catalysis

    No full text
    We describe the synthesis and coordination chemistry of the (1<i>R</i>,2<i>S</i>,5<i>R</i>)-menthyl-substituted <i>N,N</i>′-diaryl-α-diimine ligands <i>N,N</i>′-(2-Men-4-Me-Ph)<sub>2</sub>-BIAN (<b>L1</b>, Men = menthyl, BIAN = bis­(imino)­acenaphthene) and <i>N,N</i>′-(2-Men-4,6-Me<sub>2</sub>-Ph)<sub>2</sub>-BIAN (<b>L2</b>), the conformational properties of these ligands and their metal complexes, and the ethylene and 1-hexene polymerization behavior of the corresponding (α-diimine)­Ni complexes. Free ligands <b>L1</b> and <b>L2</b> and square-planar (<b>L1</b>)­PdCl<sub>2</sub> and (<b>L1</b>,<b>2</b>)­Ni­(acac)<sup>+</sup> complexes exhibit a preference for the syn conformation, in which the two menthyl units are located on the same side of the NCCN plane, while tetrahedral (<b>L1</b>,<b>2</b>)­MX<sub>2</sub> (MX<sub>2</sub> = ZnCl<sub>2</sub>, NiBr<sub>2</sub>) complexes exhibit a preference for the <i>anti</i> conformation, in which the menthyl units are located on opposite sides of the NCCN plane. Both the <i>anti</i> and the <i>syn</i> conformers of [(<b>L2</b>)­Ni­(acac)]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] can be activated by Et<sub>2</sub>AlCl to generate highly active ethylene polymerization catalysts (activity (2.5–6.6) × 10<sup>6</sup> g of PE/((mol of Ni) h) at 15 psi of C<sub>2</sub>H<sub>4</sub>, room temperature). The polyethylene produced by the <i>syn</i> conformer (<i>syn</i>/<i>anti</i> = 91/9) has a higher molecular weight (2×) and a higher branch density (3×) in comparison to that produced by the <i>anti</i> conformer. The polyhexene produced by the <i>syn</i> conformer (<i>syn</i>/<i>anti</i> = 91/9) contains a higher level of chain straightening (<i>syn</i> 50%, <i>anti</i> 41%) and a higher percentage of Me versus Bu branches (<i>syn</i> 24/26, <i>anti</i> 6/53) in comparison to that produced by the <i>anti</i> isomer. These results are indicative of a greater preference for 2,1-insertion and for chain walking (versus growth) following 1,2-insertion for the <i>syn</i> conformer

    Lewis Acid Modification and Ethylene Oligomerization Behavior of Palladium Catalysts That Contain a Phosphine-Sulfonate-Diethyl Phosphonate Ancillary Ligand

    No full text
    The multifunctional phosphine-sulfonate-diethyl phosphonate ligand [1-(P­(4-<sup><i>t</i></sup>Bu-Ph)­(2-PO<sub>3</sub>Et<sub>2</sub>-5-Me-Ph)-2-SO<sub>3</sub>-5-Me-Ph]<sup>−</sup> ([OP-P-SO]<sup>−</sup>) was used to form complexes of type [κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)]­PdMe­(L) (L = 2,6-lutidine, <b>2b</b>; L = pyridine, <b>2c</b>). B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> abstracts the Pd-bound sulfonate group of <b>2b</b> and induces a switch to a phosphine-diethyl phosphonate coordination mode, affording [κ<sup>2</sup>-(<i>O</i>P-<i>P</i>-SO-B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>)]­PdMe­(2,6-lutidine) (<b>3</b>). In contrast, MgCl<sub>2</sub> binds to the sulfonate and diethyl phosphonate units of <b>2b</b>, generating the dipalladium species [{κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)­PdMe}<sub>2</sub>­(μ-Cl)]­[MgCl] (<b>4</b>) by simple self-assembly. AgB­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub> reacts with <b>4</b> in the presence of THF to selectively abstract the Mg-<i>Cl</i> to form [{κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)­PdMe}<sub>2</sub>­(μ-Cl)­Mg­(THF)]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (<b>5</b>). The ethylene polymerization behaviors of <b>2b</b>, <b>2c</b>, <b>3</b>, and <b>5</b> are quite similar (<i>M</i><sub>n</sub>: 120–1170 Da, activity: 60–290 kg (mol Pd)<sup>–1</sup> h<sup>–1</sup>). All of these catalysts produce low-molecular-weight polyethylene with predominantly internal unsaturation, but little branching. The reaction of <b>4</b> with 2 equiv of AgB­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to abstract both chloride ions generates an active ethylene polymerization catalyst that produces linear polyethylene with a bimodal molecular weight distribution

    Synthesis and Reactivity of NHC-Supported Ni<sub>2</sub>(μ<sup>2</sup>‑η<sup>2</sup>,η<sup>2</sup>‑S<sub>2</sub>)‑Bridging Disulfide and Ni<sub>2</sub>(μ-S)<sub>2</sub>‑Bridging Sulfide Complexes

    No full text
    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ<sup>2</sup>-η<sup>2</sup>,η<sup>2</sup>-S<sub>2</sub>, η<sup>2</sup>-S<sub>2</sub>, μ-S, and μ-SH motifs. The reaction of {(IPr)­Ni}<sub>2</sub>(μ-Cl)<sub>2</sub> (<b>1</b>, IPr = 1,3-bis­(2,6-diisopropylphenyl)­imidazolin-2-ylidene) with S<sub>8</sub> yields the bridging disulfide species {(IPr)­ClNi}<sub>2</sub>(μ<sup>2</sup>-η<sup>2</sup>,η<sup>2</sup>-S<sub>2</sub>) (<b>2</b>). Complex <b>2</b> reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)­(AdNC)­Ni­(η<sup>2</sup>-S<sub>2</sub>) (<b>3a</b>) and <i>trans</i>-(IPr)­(AdNC)­NiCl<sub>2</sub> (<b>4a</b>). <b>2</b> also reacts with KC<sub>8</sub> to produce the Ni–Ni-bonded bridging sulfide complex {(IPr)­Ni}<sub>2</sub>(μ-S)<sub>2</sub> (<b>6</b>). Complex <b>6</b> reacts with H<sub>2</sub> to yield the bridging hydrosulfide compound {(IPr)­Ni}<sub>2</sub>(μ-SH)<sub>2</sub> (<b>7</b>), which retains a Ni–Ni bond. <b>7</b> is converted back to <b>6</b> by hydrogen atom abstraction by 2,4,6-<sup>t</sup>Bu<sub>3</sub>-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni–Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures
    corecore