29 research outputs found
Autoxidation of Heterocyclic Aminals
The
autoxidation reactions of 2-acyl-2,3-dihydroquinazolin-4Â(1<i>H</i>)-ones <b>4a</b> and <b>5a</b> and 2,2′-bisÂ(dihydroquinazolinone) <b>6a</b> are described. These reactions generate aminyl radicals
that undergo β-C–C cleavage, and subsequent reactions
of the resulting C-based radicals with O<sub>2</sub> lead to diverse
products with good selectivity, depending on the structure of the
substrate. Oxidation of <b>4a</b>, in which the 2-acyl group
is part of a cyclic acenaphthenone unit, yields a heterocyclic <i>C</i>-hydroperoxylaminal via 1,2-acyl migration. Oxidation of <b>5a</b>, which contains a 2-acetyl group, yields peracetic acid
and a quinazolinone product. Oxidation of <b>6a</b> forms a
bisÂ(quinazolinone) by net dehydrogenation
Hydrogen Bonding Behavior of Amide-Functionalized α‑Diimine Palladium Complexes
A class
of (<i>N,N</i>′-diaryl-α-diimine)ÂPd
complexes bearing amide substituents on the N-aryl rings is described.
Hydrogen bonding interactions involving the amide groups influence
the structures, isomer distributions, and ligand coordination behavior
of these compounds. The amide-functionalized α-diimine ligands
(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4a</b>), (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-(CÂ(î—»O)ÂNMe<sub>2</sub>)<sub>2</sub>-Ph) (<b>4b</b>), and (2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4c</b>) were prepared by condensation
reactions of 2,3-butanedione and the appropriate anilines. The attempted
preparation of (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNHMe-6-<sup>i</sup>Pr-Ph) (<b>4d</b>) yielded the corresponding 1,2-dihydroquinazolinone
derivative <b>4d</b>′ formed by nucleophilic attack of
the amide nitrogen at the proximal imine carbon. <b>4a</b> and <b>4b</b> react with (cod)ÂPdMeCl to yield square planar (α-diimine)ÂPdMeCl
complexes <b>5a</b>,<b>a</b>′ and <b>5b</b>,<b>b</b>′, respectively, which exist as two isomers
that differ in the orientation (trans/cis) of the Pd–Me ligand
and the amide-substituted arylimine unit. <b>4c</b> reacts with
(MeCN)<sub>2</sub>PdCl<sub>2</sub> and (cod)ÂPdMeCl to yield (<b>4c</b>)ÂPdCl<sub>2</sub> (<b>6c-</b><i><b>anti</b></i>,<i><b>syn</b></i>) and (<b>4c</b>)ÂPdMeCl (<b>5c-</b><i><b>anti</b></i>,<i><b>syn</b></i>), which exhibit anti/syn isomerism due
to hindered rotation of the C<sub>aryl</sub>–N bonds. In the
solid state, the amide oxygen atoms in <b>6c-</b><i><b>anti</b></i> and <b>5c-</b><i><b>syn</b></i> engage in hydrogen bonding with cocrystallized CH<sub>2</sub>Cl<sub>2</sub> solvent molecules. <b>4d</b>′ reacts
with (MeCN)<sub>2</sub>PdCl<sub>2</sub> via ring-opening metalation
to afford the α-diimine complex (<b>4d</b>)ÂPdCl<sub>2</sub> (<b>6d</b>). Transmetalation of <b>6d</b> with SnMe<sub>4</sub> yields (<b>4d</b>)ÂPdMeCl (<b>5d</b>,<b>d</b>′) as a mixture of trans and cis isomers. The reaction of <b>5d</b>,<b>d</b>′ with AgOAc yields (<b>4d</b>)ÂPdMeÂ(OAc) (<b>7d</b>) as a single isomer in which the Pd–Me
group is trans to the amide-functionalized arylimine unit. <b>5d</b>, <b>6d</b>, and <b>7d</b> exhibit intramolecular N–H···Cl
and N–H···O hydrogen bonding interactions involving
the amide NH units. The reactions of <b>5a</b>,<b>a</b>′, <b>5c-</b><i><b>anti</b></i>, and <b>5d</b>,<b>d</b>′ with AgSbF<sub>6</sub> in the presence
of pyrazole yield the corresponding (α-diimine)ÂPdMeÂ(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> salts (<b>8a</b>,<b>c</b>,<b>d</b>; pz = pyrazole), which exhibit an intramolecular
hydrogen bond between the amide oxygen and the pyrazole NH unit. <b>8a</b>,<b>c</b>,<b>d</b> undergo partial dissociation
of pyrazole in CD<sub>3</sub>CN solution to generate the corresponding
CD<sub>3</sub>CN complexes <b>9a</b>,<b>c</b>,<b>d</b>. The non-hydrogen-bonded complex {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}ÂPdMeÂ(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>8e</b>) and its
pyrazole dissociation product {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}ÂPdMeÂ(CD<sub>3</sub>CN)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>9e</b>) were generated in a
similar fashion. The pyrazole dissociation constants, <i>K</i><sub>eq</sub> = [(α-diimine)ÂPdMeÂ(CD<sub>3</sub>CN)<sup>+</sup>] × [pz] × [(α-diimine)ÂPdMeÂ(pz)<sup>+</sup>]<sup>−1</sup>, vary in the order <b>8e</b> > <b>8d</b> > <b>8a</b> > <b>8c</b>, span more than 2 orders
of
magnitude, and reflect the enhancement of pyrazole binding in <b>8a</b>,<b>c</b>,<b>d</b> by amide–pyrazole
hydrogen bonding. The intramolecular hydrogen bonding in <b>8c</b> strengthens pyrazole binding by a factor of ca. 120 (i.e., ΔΔ<i>G</i> = 2.8(1) kcal mol<sup>–1</sup>) relative to the
case of <b>8e</b>
Hydrogen Bonding Behavior of Amide-Functionalized α‑Diimine Palladium Complexes
A class
of (<i>N,N</i>′-diaryl-α-diimine)ÂPd
complexes bearing amide substituents on the N-aryl rings is described.
Hydrogen bonding interactions involving the amide groups influence
the structures, isomer distributions, and ligand coordination behavior
of these compounds. The amide-functionalized α-diimine ligands
(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4a</b>), (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-(CÂ(î—»O)ÂNMe<sub>2</sub>)<sub>2</sub>-Ph) (<b>4b</b>), and (2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNMe<sub>2</sub>-6-<sup>i</sup>Pr-Ph) (<b>4c</b>) were prepared by condensation
reactions of 2,3-butanedione and the appropriate anilines. The attempted
preparation of (2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2-CÂ(î—»O)ÂNHMe-6-<sup>i</sup>Pr-Ph) (<b>4d</b>) yielded the corresponding 1,2-dihydroquinazolinone
derivative <b>4d</b>′ formed by nucleophilic attack of
the amide nitrogen at the proximal imine carbon. <b>4a</b> and <b>4b</b> react with (cod)ÂPdMeCl to yield square planar (α-diimine)ÂPdMeCl
complexes <b>5a</b>,<b>a</b>′ and <b>5b</b>,<b>b</b>′, respectively, which exist as two isomers
that differ in the orientation (trans/cis) of the Pd–Me ligand
and the amide-substituted arylimine unit. <b>4c</b> reacts with
(MeCN)<sub>2</sub>PdCl<sub>2</sub> and (cod)ÂPdMeCl to yield (<b>4c</b>)ÂPdCl<sub>2</sub> (<b>6c-</b><i><b>anti</b></i>,<i><b>syn</b></i>) and (<b>4c</b>)ÂPdMeCl (<b>5c-</b><i><b>anti</b></i>,<i><b>syn</b></i>), which exhibit anti/syn isomerism due
to hindered rotation of the C<sub>aryl</sub>–N bonds. In the
solid state, the amide oxygen atoms in <b>6c-</b><i><b>anti</b></i> and <b>5c-</b><i><b>syn</b></i> engage in hydrogen bonding with cocrystallized CH<sub>2</sub>Cl<sub>2</sub> solvent molecules. <b>4d</b>′ reacts
with (MeCN)<sub>2</sub>PdCl<sub>2</sub> via ring-opening metalation
to afford the α-diimine complex (<b>4d</b>)ÂPdCl<sub>2</sub> (<b>6d</b>). Transmetalation of <b>6d</b> with SnMe<sub>4</sub> yields (<b>4d</b>)ÂPdMeCl (<b>5d</b>,<b>d</b>′) as a mixture of trans and cis isomers. The reaction of <b>5d</b>,<b>d</b>′ with AgOAc yields (<b>4d</b>)ÂPdMeÂ(OAc) (<b>7d</b>) as a single isomer in which the Pd–Me
group is trans to the amide-functionalized arylimine unit. <b>5d</b>, <b>6d</b>, and <b>7d</b> exhibit intramolecular N–H···Cl
and N–H···O hydrogen bonding interactions involving
the amide NH units. The reactions of <b>5a</b>,<b>a</b>′, <b>5c-</b><i><b>anti</b></i>, and <b>5d</b>,<b>d</b>′ with AgSbF<sub>6</sub> in the presence
of pyrazole yield the corresponding (α-diimine)ÂPdMeÂ(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> salts (<b>8a</b>,<b>c</b>,<b>d</b>; pz = pyrazole), which exhibit an intramolecular
hydrogen bond between the amide oxygen and the pyrazole NH unit. <b>8a</b>,<b>c</b>,<b>d</b> undergo partial dissociation
of pyrazole in CD<sub>3</sub>CN solution to generate the corresponding
CD<sub>3</sub>CN complexes <b>9a</b>,<b>c</b>,<b>d</b>. The non-hydrogen-bonded complex {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}ÂPdMeÂ(pz)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>8e</b>) and its
pyrazole dissociation product {(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)ÂNî—»CMeCMeî—»NÂ(2,6-<sup>i</sup>Pr<sub>2</sub>-Ph)}ÂPdMeÂ(CD<sub>3</sub>CN)<sup>+</sup>SbF<sub>6</sub><sup>–</sup> (<b>9e</b>) were generated in a
similar fashion. The pyrazole dissociation constants, <i>K</i><sub>eq</sub> = [(α-diimine)ÂPdMeÂ(CD<sub>3</sub>CN)<sup>+</sup>] × [pz] × [(α-diimine)ÂPdMeÂ(pz)<sup>+</sup>]<sup>−1</sup>, vary in the order <b>8e</b> > <b>8d</b> > <b>8a</b> > <b>8c</b>, span more than 2 orders
of
magnitude, and reflect the enhancement of pyrazole binding in <b>8a</b>,<b>c</b>,<b>d</b> by amide–pyrazole
hydrogen bonding. The intramolecular hydrogen bonding in <b>8c</b> strengthens pyrazole binding by a factor of ca. 120 (i.e., ΔΔ<i>G</i> = 2.8(1) kcal mol<sup>–1</sup>) relative to the
case of <b>8e</b>
Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands
The synthesis of the phosphine-cyclopentanesulfonate
pro-ligands
Li/KÂ[2-PPh<sub>2</sub>-cyclopentanesulfonate] (Li/KÂ[<b>2a</b>]), Li/KÂ[2-PÂ(2-OMe-Ph)<sub>2</sub>-cyclopentanesulfonate] (Li/KÂ[<b>2b</b>]), and HÂ[<b>2b</b>], and the corresponding PdÂ(II)
alkyl complexes (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2a</b>)ÂPdMeÂ(pyridine) (<b>3a</b>) and (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2b</b>)ÂPdMeÂ(pyridine)
(<b>3b</b>) is described. The sulfonate-bridged base-free dimer
{(<b>2b</b>)ÂPdMe}<sub>2</sub> (<b>4b</b>) was synthesized
by abstraction of pyridine from <b>3b</b> using BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. The borane-coordinated base-free dimer
[{<b>2b·</b>BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>}ÂPdMe]<sub>2</sub> (<b>5b</b>), in which BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> binds to a sulfonate oxygen, was prepared by addition of
1 equiv of BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> per Pd to <b>4b</b> or addition of 2 equiv of BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> to <b>3b</b>. Compounds <b>3b</b>, <b>4b</b>, and <b>5b</b> polymerize ethylene with low activity (up to
210 kg mol<sup>–1</sup> h<sup>–1</sup> at 250 psi and
80 °C) to linear polyethylene (<i>M</i><sub>n</sub> = 1950–5250 Da) with predominantly internal olefin placements. <b>3b</b> and <b>4b</b> copolymerize ethylene with methyl acrylate
to linear copolymers that contain up to 11.7 mol % methyl acrylate,
which is incorporated as −CH<sub>2</sub>CHÂ(CO<sub>2</sub>Me)ÂCH<sub>2</sub>– (80%) in-chain units and −CH<sub>2</sub>CHÂ(CO<sub>2</sub>Me)ÂMe (8%) and −CH<sub>2</sub>CHî—»CHÂ(CO<sub>2</sub>Me) (12%) chain-end units. <b>3b</b> and <b>4b</b> also
copolymerize ethylene with vinyl fluoride to linear copolymers that
contain up to 0.41 mol % vinyl fluoride, which is incorporated as
−CH<sub>2</sub>CHFCH<sub>2</sub>– (∼80%) in-chain
units and −CH<sub>2</sub>CF<sub>2</sub>H (7%), −CH<sub>2</sub>CHFCH<sub>3</sub> (5%), and −CH<sub>2</sub>CH<sub>2</sub>F (8%) chain-end units. Complexes <b>3b</b> and <b>4b</b> are more stable and active in ethylene polymerization than analogous
(PAr<sub>2</sub>-<i>CH</i><sub>2</sub><i>CH</i><sub>2</sub>SO<sub>3</sub>)ÂPdR catalysts, but are less active than
analogous (PAr<sub>2</sub>-<i>arene</i>sulfonate)ÂPdR catalysts.
Low-temperature NMR studies show that <b>4b</b> reacts with
ethylene below −10 °C to form the ethylene adduct <i>cis</i>-<i>P</i>,<i>R</i>-(<b>2b</b>)ÂPdMeÂ(ethylene) (<b>7b</b>), which undergoes ethylene insertion
at 5 °C. DFT calculations for a model (PMe<sub>2</sub>-cyclopentanesulfonate)ÂPdÂ(Pr)Â(ethylene)
species show that ethylene insertion proceeds by <i>cis</i>-<i>P</i>,<i>R</i>/<i>trans</i>-<i>P</i>,<i>R</i> isomerization followed by migratory
insertion, and that the lower activity of <b>3b</b> and <b>4b</b> vis-aÌ€-vis analogous (PAr<sub>2</sub>-arenesulfonate)ÂPdR
catalysts results from a higher barrier for migratory insertion of
the <i>trans</i>-<i>P</i>,<i>R</i> isomer
Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide
The reaction of CO<sub>2</sub> with (PDI)ÂFeMe (<b>1</b>), (PDI)ÂFeÂ(Me)ÂPMe<sub>3</sub> (<b>1-PMe</b><sub><b>3</b></sub>) and [(PDI)ÂFeMe]Â[BPh<sub>4</sub>] (<b>2</b>, PDI = 2,6-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>–C<sub>6</sub>H<sub>3</sub>–Nî—»CMe)<sub>2</sub>–C<sub>5</sub>H<sub>3</sub>N) generates (PDI)ÂFeÂOAc
(<b>3</b>), (PDI)ÂFeÂ(OAc)ÂPMe<sub>3</sub> (<b>3-PMe</b><sub><b>3</b></sub>), and [(PDI)ÂFeOAc]Â[BPh<sub>4</sub>] (<b>4</b>), respectively. Kinetic data and solvent
effects provide evidence that these reactions occur by precoordination
of CO<sub>2</sub> to the Fe center regardless of the charge state
and thus favor an insertion mechanism for carboxylation. Carboxylation
of <b>1-PMe</b><sub><b>3</b></sub> requires initial dissociation
of PMe<sub>3</sub> to generate <b>1</b>, which reacts with CO<sub>2</sub>; <b>1-PMe</b><sub><b>3</b></sub> itself does
not react directly with CO<sub>2</sub>. CO<sub>2</sub> reacts 5 times
faster with neutral <b>1</b> than with cationic <b>2</b> (at 0 °C), which is ascribed to the higher nucleophilicity
of the Fe–Me group in <b>1</b>
Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide
The reaction of CO<sub>2</sub> with (PDI)ÂFeMe (<b>1</b>), (PDI)ÂFeÂ(Me)ÂPMe<sub>3</sub> (<b>1-PMe</b><sub><b>3</b></sub>) and [(PDI)ÂFeMe]Â[BPh<sub>4</sub>] (<b>2</b>, PDI = 2,6-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>–C<sub>6</sub>H<sub>3</sub>–Nî—»CMe)<sub>2</sub>–C<sub>5</sub>H<sub>3</sub>N) generates (PDI)ÂFeÂOAc
(<b>3</b>), (PDI)ÂFeÂ(OAc)ÂPMe<sub>3</sub> (<b>3-PMe</b><sub><b>3</b></sub>), and [(PDI)ÂFeOAc]Â[BPh<sub>4</sub>] (<b>4</b>), respectively. Kinetic data and solvent
effects provide evidence that these reactions occur by precoordination
of CO<sub>2</sub> to the Fe center regardless of the charge state
and thus favor an insertion mechanism for carboxylation. Carboxylation
of <b>1-PMe</b><sub><b>3</b></sub> requires initial dissociation
of PMe<sub>3</sub> to generate <b>1</b>, which reacts with CO<sub>2</sub>; <b>1-PMe</b><sub><b>3</b></sub> itself does
not react directly with CO<sub>2</sub>. CO<sub>2</sub> reacts 5 times
faster with neutral <b>1</b> than with cationic <b>2</b> (at 0 °C), which is ascribed to the higher nucleophilicity
of the Fe–Me group in <b>1</b>
(α-Diimine)nickel Complexes That Contain Menthyl Substituents: Synthesis, Conformational Behavior, and Olefin Polymerization Catalysis
We describe the synthesis
and coordination chemistry of the (1<i>R</i>,2<i>S</i>,5<i>R</i>)-menthyl-substituted <i>N,N</i>′-diaryl-α-diimine
ligands <i>N,N</i>′-(2-Men-4-Me-Ph)<sub>2</sub>-BIAN
(<b>L1</b>, Men =
menthyl, BIAN = bisÂ(imino)Âacenaphthene) and <i>N,N</i>′-(2-Men-4,6-Me<sub>2</sub>-Ph)<sub>2</sub>-BIAN (<b>L2</b>), the conformational
properties of these ligands and their metal complexes, and the ethylene
and 1-hexene polymerization behavior of the corresponding (α-diimine)ÂNi
complexes. Free ligands <b>L1</b> and <b>L2</b> and square-planar
(<b>L1</b>)ÂPdCl<sub>2</sub> and (<b>L1</b>,<b>2</b>)ÂNiÂ(acac)<sup>+</sup> complexes exhibit a preference for the syn
conformation, in which the two menthyl units are located on the same
side of the Nî—»CCî—»N plane, while tetrahedral (<b>L1</b>,<b>2</b>)ÂMX<sub>2</sub> (MX<sub>2</sub> = ZnCl<sub>2</sub>, NiBr<sub>2</sub>) complexes exhibit a preference for the <i>anti</i> conformation, in which the menthyl units are located
on opposite sides of the Nî—»CCî—»N plane. Both the <i>anti</i> and the <i>syn</i> conformers of [(<b>L2</b>)ÂNiÂ(acac)]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] can
be activated by Et<sub>2</sub>AlCl to generate highly active ethylene
polymerization catalysts (activity (2.5–6.6) × 10<sup>6</sup> g of PE/((mol of Ni) h) at 15 psi of C<sub>2</sub>H<sub>4</sub>, room temperature). The polyethylene produced by the <i>syn</i> conformer (<i>syn</i>/<i>anti</i> = 91/9) has
a higher molecular weight (2×) and a higher branch density (3×)
in comparison to that produced by the <i>anti</i> conformer.
The polyhexene produced by the <i>syn</i> conformer (<i>syn</i>/<i>anti</i> = 91/9) contains a higher level
of chain straightening (<i>syn</i> 50%, <i>anti</i> 41%) and a higher percentage of Me versus Bu branches (<i>syn</i> 24/26, <i>anti</i> 6/53) in comparison to that produced
by the <i>anti</i> isomer. These results are indicative
of a greater preference for 2,1-insertion and for chain walking (versus
growth) following 1,2-insertion for the <i>syn</i> conformer
Lewis Acid Modification and Ethylene Oligomerization Behavior of Palladium Catalysts That Contain a Phosphine-Sulfonate-Diethyl Phosphonate Ancillary Ligand
The
multifunctional phosphine-sulfonate-diethyl phosphonate ligand
[1-(PÂ(4-<sup><i>t</i></sup>Bu-Ph)Â(2-PO<sub>3</sub>Et<sub>2</sub>-5-Me-Ph)-2-SO<sub>3</sub>-5-Me-Ph]<sup>−</sup> ([OP-P-SO]<sup>−</sup>) was used to form complexes of type
[κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)]ÂPdMeÂ(L)
(L = 2,6-lutidine, <b>2b</b>; L = pyridine, <b>2c</b>).
BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> abstracts the Pd-bound sulfonate
group of <b>2b</b> and induces a switch to a phosphine-diethyl
phosphonate coordination mode, affording [κ<sup>2</sup>-(<i>O</i>P-<i>P</i>-SO-BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>)]ÂPdMeÂ(2,6-lutidine) (<b>3</b>). In contrast,
MgCl<sub>2</sub> binds to the sulfonate and diethyl phosphonate units
of <b>2b</b>, generating the dipalladium species [{κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)ÂPdMe}<sub>2</sub>Â(μ-Cl)]Â[MgCl] (<b>4</b>) by simple self-assembly.
AgBÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub> reacts with <b>4</b> in the presence of THF to selectively abstract the Mg-<i>Cl</i> to form [{κ<sup>2</sup>-(OP-<i>P</i>-S<i>O</i>)ÂPdMe}<sub>2</sub>Â(μ-Cl)ÂMgÂ(THF)]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (<b>5</b>). The ethylene
polymerization behaviors of <b>2b</b>, <b>2c</b>, <b>3</b>, and <b>5</b> are quite similar (<i>M</i><sub>n</sub>: 120–1170 Da, activity: 60–290 kg (mol
Pd)<sup>–1</sup> h<sup>–1</sup>). All of these catalysts
produce low-molecular-weight polyethylene with predominantly internal
unsaturation, but little branching. The reaction of <b>4</b> with 2 equiv of AgBÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to abstract
both chloride ions generates an active ethylene polymerization catalyst
that produces linear polyethylene with a bimodal molecular weight
distribution
Synthesis and Reactivity of NHC-Supported Ni<sub>2</sub>(μ<sup>2</sup>‑η<sup>2</sup>,η<sup>2</sup>‑S<sub>2</sub>)‑Bridging Disulfide and Ni<sub>2</sub>(μ-S)<sub>2</sub>‑Bridging Sulfide Complexes
The
(IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear
complexes with a diverse range of sulfur ligands, including μ<sup>2</sup>-η<sup>2</sup>,η<sup>2</sup>-S<sub>2</sub>, η<sup>2</sup>-S<sub>2</sub>, μ-S, and μ-SH motifs. The reaction
of {(IPr)ÂNi}<sub>2</sub>(μ-Cl)<sub>2</sub> (<b>1</b>,
IPr = 1,3-bisÂ(2,6-diisopropylphenyl)Âimidazolin-2-ylidene) with S<sub>8</sub> yields the bridging disulfide species {(IPr)ÂClNi}<sub>2</sub>(μ<sup>2</sup>-η<sup>2</sup>,η<sup>2</sup>-S<sub>2</sub>) (<b>2</b>). Complex <b>2</b> reacts with 2 equiv
of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide
compound (IPr)Â(AdNC)ÂNiÂ(η<sup>2</sup>-S<sub>2</sub>) (<b>3a</b>) and <i>trans</i>-(IPr)Â(AdNC)ÂNiCl<sub>2</sub> (<b>4a</b>). <b>2</b> also reacts with KC<sub>8</sub> to produce the
Ni–Ni-bonded bridging sulfide complex {(IPr)ÂNi}<sub>2</sub>(μ-S)<sub>2</sub> (<b>6</b>). Complex <b>6</b> reacts
with H<sub>2</sub> to yield the bridging hydrosulfide compound {(IPr)ÂNi}<sub>2</sub>(μ-SH)<sub>2</sub> (<b>7</b>), which retains a
Ni–Ni bond. <b>7</b> is converted back to <b>6</b> by hydrogen atom abstraction by 2,4,6-<sup>t</sup>Bu<sub>3</sub>-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand
provide lateral steric protection of the (IPr)Ni unit but allow for
the formation of Ni–Ni-bonded dinuclear species and electronically
preferred rather than sterically preferred structures