3,041 research outputs found
Design and optimization of electrochemical microreactors for continuous electrosynthesis
The study focuses on the design and construction, as well as the theoretical and experimental optimization of electrochemical filter press microreactors for the electrosynthesis of molecules with a high added value. The main characteristics of these devices are firstly a high-specific electrochemical area to increase conversion and selectivity, and secondly the shape and size of themicrochannels designed for a uniform residence time distribution of the fluid. A heat exchanger is integrated into the microstructured electrode to rapidly remove (or supply) the heat required in exo- or endothermic reactions. The microreactors designed are used to perform-specific electrosynthesis reactions such as thermodynamically unfavorable reactions (continuous NADH regeneration), or reactions with high enthalpy changes
Magnitude bias of microlensed sources towards the Large Magellanic Cloud
There are lines of evidence suggesting that some of the observed microlensing
events in the direction of the Large Magellanic Cloud (LMC) are caused by
ordinary star lenses as opposed to dark Machos in the Galactic halo. Efficient
lensing by ordinary stars generally requires the presence of one or more
additional concentrations of stars along the line of sight to the LMC disk. If
such a population behind the LMC disk exists, then the source stars (for
lensing by LMC disk objects) will be drawn preferentially from the background
population and will show systematic differences from LMC field stars. One such
difference is that the (lensed) source stars will be farther away than the
average LMC field stars, and this should be reflected in their apparent
baseline magnitudes. We focus on red clump stars: these should appear in the
color-magnitude diagram at a few tenths of a magnitude fainter than the field
red clump. Suggestively, one of the two near-clump confirmed events,
MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.Comment: To appear in ApJ Letters. Shortened to match the accepted version, 8
pages plus 1 ps figur
Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter
We examine the chemical abundance constraints on a population of white dwarfs
in the Halo of our Galaxy. We are motivated by microlensing evidence for
massive compact halo objects (Machos) in the Galactic Halo, but our work
constrains white dwarfs in the Halo regardless of what the Machos are. We focus
on the composition of the material that would be ejected as the white dwarfs
are formed; abundance patterns in the ejecta strongly constrain white dwarf
production scenarios. Using both analytical and numerical chemical evolution
models, we confirm that very strong constraints come from Galactic Pop II and
extragalactic carbon abundances. We also point out that depending on the
stellar model, significant nitrogen is produced rather than carbon. The
combined constraints from C and N give from
comparison with the low C and N abundances in the Ly forest. We note,
however, that these results are subject to uncertainties regarding the
nucleosynthesis of low-metallicity stars. We thus investigate additional
constraints from D and He, finding that these light elements can be kept
within observational limits only for \Omega_{WD} \la 0.003 and for a white
dwarf progenitor initial mass function sharply peaked at low mass (2).
Finally, we consider a Galactic wind, which is required to remove the ejecta
accompanying white dwarf production from the galaxy. We show that such a wind
can be driven by Type Ia supernovae arising from the white dwarfs themselves,
but these supernovae also lead to unacceptably large abundances of iron. We
conclude that abundance constraints exclude white dwarfs as Machos. (abridged)Comment: Written in AASTeX, 26 pages plus 4 ps figure
Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)
We present energy filtered electron emission spectromicroscopy with spatial
and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown
by furnace annealing. Low energy electron microscopy shows that more than 80%
of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides
an independent measurement of the graphene thickness distribution map. The work
function, measured by photoelectron emission microscopy (PEEM), varies across
the surface from 4.34 to 4.50eV according to both the graphene thickness and
the graphene-SiC interface chemical state. At least two SiC surface chemical
states (i.e., two different SiC surface structures) are present at the
graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface.
K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale
regions show that the Dirac point shifts as a function of graphene thickness.
Novel Bragg diffraction of the Dirac cones via the superlattice formed by the
commensurately rotated graphene sheets is observed. The experiments underline
the importance of lateral and spectroscopic resolution on the scale of future
electronic devices in order to precisely characterize the transport properties
and band alignments
A New Channel for the Detection of Planetary Systems Through Microlensing: II. Repeating Events
In the companion paper we began the task of systematically studying the
detection of planets in wide orbits () via microlensing surveys.
In this paper we continue, focusing on repeating events. We find that, if all
planetary systems are similar to our own Solar System, reasonable extensions of
the present observing strategies would allow us to detect 3-6 repeating events
per year along the direction to the Bulge. Indeed, if planetary systems with
multiple planets are common, then future monitoring programs which lead to the
discovery of thousands of stellar-lens events will likely discover events in
which several different planets within a single system serve as lenses, with
light curves exhibiting multiple repetitions. In this paper we discuss
observing strategies to maximize the discovery of all wide-orbit planet-lens
events. We also compare the likely detection rates of planets in wide orbits to
those of planets located in the zone for resonant lensing. We find that,
depending on the values of the planet masses and stellar radii of the lensed
sources (which determine whether or not finite source size is important), and
also on the sensitivity of the photometry used by observers, the detection of
planets in wide orbits may be the primary route to the discovery of planets via
microlensing. We also discuss how the combination of resonant and wide-orbit
events can help us to learn about the distribution of planetary system
properties (S 6.1). In addition, by determining the fraction of short-duration
events due to planets, we indirectly derive information about the fraction of
all short-duration events that may be due to low-mass MACHOs (S 6.2).Comment: 51 pages, 7 figures. To be published in the Astrophysical Journal, 20
February 1999. This completes the introduction to the discovery of planets in
wide orbits begun in astro-ph/9808075, also to appear in ApJ on 20 February
199
Coexpression, copurification, crystallization and preliminary X-ray analysis of a complex of ARL2-GTP and PDE delta
The small GTPase ARL2 (from Mus musculus) and an effector protein, the δ subunit of human cGMP phosphodiesterase (hPDE δ), were coexpressed and copurified from Escherichia coli as a stable complex. Coexpression significantly increased the otherwise low yield of PDE δ production in E. coli. The complex, which contains ARL2 in the activated GTP-bound form, was crystallized in two forms. The first belongs to the monoclinic space group P21, with unit-cell parameters a = 48.1, b = 45.7, c = 74.7 Å, β = 94.0° and one complex (39 kDa) in the asymmetric unit. Cryocooled crystals diffract to 2.3 Å using synchrotron radiation. The micro-focused X-ray beam at beamline ID13 (ESRF) allowed the use of very small crystals, which helped to overcome twinning and enabled the identification of a molecular-replacement solution. The second form recrystallized from the first one after several months. These crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 44.5, b = 65.4, c = 104.4 Å and one complex in the asymmetric unit. They diffracted to 1.8 Å using synchrotron radiation
Asymfast, a method for convolving maps with asymmetric main beams
We describe a fast and accurate method to perform the convolution of a sky
map with a general asymmetric main beam along any given scanning strategy. The
method is based on the decomposition of the beam as a sum of circular
functions, here Gaussians. It can be easily implemented and is much faster than
pixel-by-pixel convolution. In addition, Asymfast can be used to estimate the
effective circularized beam transfer functions of CMB instruments with
non-symmetric main beam. This is shown using realistic simulations and by
comparison to analytical approximations which are available for Gaussian
elliptical beams. Finally, the application of this technique to Archeops data
is also described. Although developped within the framework of Cosmic Microwave
Background observations, our method can be applied to other areas of
astrophysics.Comment: 9 pages, 4 figures, Phys. Rev. D, in pres
- …