7 research outputs found

    Global Sensitivity Analysis with Small Sample Sizes: Ordinary Least Squares Approach

    No full text
    A new version of global sensitivity analysis is developed in this paper. This new version coupled with tools from statistics, machine learning, and optimization can devise small sample sizes that allow for the accurate ordering of sensitivity coefficients for the first 10–30 most sensitive chemical reactions in complex chemical-kinetic mechanisms, and is particularly useful for studying the chemistry in realistic devices. A key part of the paper is calibration of these small samples. Because these small sample sizes are developed for use in realistic combustion devices, the calibration is done over the ranges of conditions in such devices, with a test case being the operating conditions of a compression ignition engine studied earlier. Compression–ignition engines operate under low-temperature combustion conditions with quite complicated chemistry making this calibration difficult, leading to the possibility of false positives and false negatives in the ordering of the reactions. So an important aspect of the paper is showing how to handle the trade-off between false positives and false negatives using ideas from the multiobjective optimization literature. The combination of the new global sensitivity method and the calibration are sample sizes a factor of approximately 10 times smaller than were available with our previous algorithm

    Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde

    No full text
    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH<sub>3</sub>CHO and its deuterated analogs, CH<sub>3</sub>CDO, CD<sub>3</sub>CHO, and CD<sub>3</sub>CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH<sub>2</sub>CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH<sub>3</sub>CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH<sub>3</sub>CHO to CH<sub>2</sub>CHOH. However, the subsequent product channels for CH<sub>2</sub>CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH<sub>3</sub>CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH<sub>3</sub>CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH<sub>3</sub>CHO at high temperatures is C–C bond fission with a minor contribution (∼10–20%) from the roaming mechanism to form CH<sub>4</sub> and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH<sub>2</sub>CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH<sub>2</sub>CHOH, which can accumulate to minor amounts at high temperatures, <i>T</i> > 1000 K, in most lab-scale experiments that use large initial concentrations of CH<sub>3</sub>CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH<sub>3</sub>CHO and CH<sub>2</sub>CHOH with H-atoms and have no bearing on the unimolecular decomposition mechanism of CH<sub>3</sub>CHO. The present simulations also indicate that experiments using these microtubular reactors when interpreted with the aid of high-level theoretical calculations and kinetics modeling can offer insights into the chemistry of elusive intermediates in the high-temperature pyrolysis of organic molecules

    Quantification of Key Peroxy and Hydroperoxide Intermediates in the Low-Temperature Oxidation of Dimethyl Ether

    No full text
    Dimethyl ether (DME) oxidation is a model chemical system with a small number of prototypical reaction intermediates that also has practical importance for low-carbon transportation. Although it has been studied experimentally and theoretically, ambiguity remains in the relative importance of competing DME oxidation pathways in the low-temperature autoignition regime. To focus on the primary reactions in DME autoignition, we measured the time-resolved concentration of five intermediates, CH3OCH2OO (ROO), OOCH2OCH2OOH (OOQOOH), HOOCH2OCHO (hydroperoxymethyl formate, HPMF), CH2O, and CH3OCHO (methyl formate, MF), from photolytically initiated experiments. We performed these studies at P = 10 bar and T = 450–575 K, using a high-pressure photolysis reactor coupled to a time-of-flight mass spectrometer with tunable vacuum-ultraviolet synchrotron ionization at the Advanced Light Source. Our measurements reveal that the timescale of ROO decay and product formation is much shorter than predicted by current DME combustion models. The models also strongly underpredict the observed yields of CH2O and MF and do not capture the temperature dependence of OOQOOH and HPMF yields. Adding the ROO + OH → RO + HO2 reaction to the chemical mechanism (with a rate coefficient approximated from similar reactions) improves the prediction of MF. Increasing the rate coefficients of ROO ↔ QOOH and QOOH + O2 ↔ OOQOOH reactions brings the model predictions closer to experimental observations for OOQOOH and HPMF, while increasing the rate coefficient for the QOOH → 2CH2O + OH reaction is needed to improve the predictions of formaldehyde. To aid future quantification of DME oxidation intermediates by photoionization mass spectrometry, we report experimentally determined ionization cross-sections for ROO, OOQOOH, and HPMF

    Quantification of Key Peroxy and Hydroperoxide Intermediates in the Low-Temperature Oxidation of Dimethyl Ether

    No full text
    Dimethyl ether (DME) oxidation is a model chemical system with a small number of prototypical reaction intermediates that also has practical importance for low-carbon transportation. Although it has been studied experimentally and theoretically, ambiguity remains in the relative importance of competing DME oxidation pathways in the low-temperature autoignition regime. To focus on the primary reactions in DME autoignition, we measured the time-resolved concentration of five intermediates, CH3OCH2OO (ROO), OOCH2OCH2OOH (OOQOOH), HOOCH2OCHO (hydroperoxymethyl formate, HPMF), CH2O, and CH3OCHO (methyl formate, MF), from photolytically initiated experiments. We performed these studies at P = 10 bar and T = 450–575 K, using a high-pressure photolysis reactor coupled to a time-of-flight mass spectrometer with tunable vacuum-ultraviolet synchrotron ionization at the Advanced Light Source. Our measurements reveal that the timescale of ROO decay and product formation is much shorter than predicted by current DME combustion models. The models also strongly underpredict the observed yields of CH2O and MF and do not capture the temperature dependence of OOQOOH and HPMF yields. Adding the ROO + OH → RO + HO2 reaction to the chemical mechanism (with a rate coefficient approximated from similar reactions) improves the prediction of MF. Increasing the rate coefficients of ROO ↔ QOOH and QOOH + O2 ↔ OOQOOH reactions brings the model predictions closer to experimental observations for OOQOOH and HPMF, while increasing the rate coefficient for the QOOH → 2CH2O + OH reaction is needed to improve the predictions of formaldehyde. To aid future quantification of DME oxidation intermediates by photoionization mass spectrometry, we report experimentally determined ionization cross-sections for ROO, OOQOOH, and HPMF

    Quantification of Key Peroxy and Hydroperoxide Intermediates in the Low-Temperature Oxidation of Dimethyl Ether

    No full text
    Dimethyl ether (DME) oxidation is a model chemical system with a small number of prototypical reaction intermediates that also has practical importance for low-carbon transportation. Although it has been studied experimentally and theoretically, ambiguity remains in the relative importance of competing DME oxidation pathways in the low-temperature autoignition regime. To focus on the primary reactions in DME autoignition, we measured the time-resolved concentration of five intermediates, CH3OCH2OO (ROO), OOCH2OCH2OOH (OOQOOH), HOOCH2OCHO (hydroperoxymethyl formate, HPMF), CH2O, and CH3OCHO (methyl formate, MF), from photolytically initiated experiments. We performed these studies at P = 10 bar and T = 450–575 K, using a high-pressure photolysis reactor coupled to a time-of-flight mass spectrometer with tunable vacuum-ultraviolet synchrotron ionization at the Advanced Light Source. Our measurements reveal that the timescale of ROO decay and product formation is much shorter than predicted by current DME combustion models. The models also strongly underpredict the observed yields of CH2O and MF and do not capture the temperature dependence of OOQOOH and HPMF yields. Adding the ROO + OH → RO + HO2 reaction to the chemical mechanism (with a rate coefficient approximated from similar reactions) improves the prediction of MF. Increasing the rate coefficients of ROO ↔ QOOH and QOOH + O2 ↔ OOQOOH reactions brings the model predictions closer to experimental observations for OOQOOH and HPMF, while increasing the rate coefficient for the QOOH → 2CH2O + OH reaction is needed to improve the predictions of formaldehyde. To aid future quantification of DME oxidation intermediates by photoionization mass spectrometry, we report experimentally determined ionization cross-sections for ROO, OOQOOH, and HPMF

    Weakly Bound Free Radicals in Combustion: “Prompt” Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    No full text
    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, time scales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational–rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH<sub>2</sub>O and H + CH<sub>2</sub>O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain-branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations

    Quantum Tunneling Affects Engine Performance

    No full text
    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO<sub>2</sub> + HO<sub>2</sub> = H<sub>2</sub>O<sub>2</sub> + O<sub>2</sub> can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here
    corecore