424 research outputs found

    General models of Einstein gravity with a non-Newtonian weak-field limit

    Full text link
    We investigate Einstein theories of gravity, coupled to a scalar field \vphi and point-like matter, which are characterized by a scalar field-dependent matter coupling function e^{H(\vphi)}. We show that under mild constraints on the form of the potential for the scalar field, there are a broad class of Einstein-like gravity models -characterized by the asymptotic behavior of H- which allow for a non-Newtonian weak-field limit with the gravitational potential behaving for large distances as ln r. The Newtonian term GM/r appears only as sub-leading. We point out that this behavior is also shared by gravity models described by f(R) Lagrangians. The relevance of our results for the building of infrared modified theories of gravity and for modified Newtonian dynamics is also discussed.Comment: 9 page

    The Local Velocity Anomaly

    Full text link
    There is a velocity discontinuity at about 7 Mpc between the galaxies of the Local Sheet that are moving together with low internal velocity dispersion and the adjacent structures. The Local Sheet bounds the Local Void. The Local Sheet is determined to have a peculiar velocity of 260 km/s away from the center of the void. In order for this large velocity to be generated by an absence of gravity, the Local Void must be at least 45 Mpc in diameter and be very empty.Comment: Invited review, "Galaxies in the Local Volume", Sydney, 8-13 July, 2007. eds. B. Koribalski & H. Jerjen, Astrophys. & Space Sci. Proceed. 10 pages with 7 figure

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Broadening of Spectral Lines due to Dynamic Multiple Scattering and the Tully-Fisher Relation

    Full text link
    The frequency shift of spectral lines is most often explained by the Doppler Effect in terms of relative motion, whereas the Doppler broadening of a particular line mainly depends on the absolute temperature. The Wolf effect on the other hand deals with the correlation induced spectral change and explains both the broadening and shift of the spectral lines. In this framework a relation between the width of the spectral line is related to the redshift z for the line and hence with the distance. For smaller values of z a relation similar to the Tully-Fisher relation can be obtained and for larger values of z a more general relation can be constructed. The derivation of this kind of relation based on dynamic multiple scattering theory may play a significant role in explaining the overall spectra of quasi stellar objects. We emphasize that this mechanism is not applicable for nearby galaxies, z1z \leq 1.Comment: 18 pages, 5 figures, revised Version has been submitted to Physical Review A. (2nd author's affiliation corrected

    Testing quantised inertia on galactic scales

    Full text link
    Galaxies and galaxy clusters have rotational velocities apparently too fast to allow them to be gravitationally bound by their visible matter. This has been attributed to the presence of invisible (dark) matter, but so far this has not been directly detected. Here, it is shown that a new model that modifies inertial mass by assuming it is caused by Unruh radiation, which is subject to a Hubble-scale (Theta) Casimir effect predicts the rotational velocity (v) to be: v^4=2GMc^2/Theta (the Tully-Fisher relation) where G is the gravitational constant, M is the baryonic mass and c is the speed of light. The model predicts the outer rotational velocity of dwarf and disk galaxies, and galaxy clusters, within error bars, without dark matter or adjustable parameters, and makes a prediction that local accelerations should remain above 2c^2/Theta at a galaxy's edge.Comment: 7 pages, 1 figure. Accepted for publication in Astrophysics and Space Science on 27/7/201

    Catalog of Nearby Isolated Galaxies in the Volume z<0.01

    Full text link
    We present a catalog of 520 most isolated nearby galaxies with radial velocities V_LG<3500 km/s covering the entire sky. This population of "space orphans" makes up 4.8% among 10900 galaxies with measured radial velocities. We describe the isolation criterion used to select our sample, called the "Local Orphan Galaxies" (LOG), and discuss their basic optical and HI properties. A half of the LOG catalog is occupied by the Sdm, Im and Ir morphological type galaxies without a bulge. The median ratio M_gas/M_star in the LOG galaxies exceeds 1. The distribution of the catalog galaxies on the sky looks uniform with some signatures of a weak clustering on the scale of about 0.5 Mpc. The LOG galaxies are located in the regions where the mean local density of matter is approximately 50 times lower than the mean global density. We indicate a number of LOG galaxies with distorted structures, which may be the consequence of interaction of isolated galaxies with massive dark objects

    Phenomenological covariant approach to gravity

    Full text link
    We covariantly modify the Einstein-Hilbert action such that the modified action perturbatively resolves the flat rotational velocity curve of the spiral galaxies and gives rise to the Tully-Fisher relation, and dynamically generates the cosmological constant. This modification requires introducing just a single new universal parameter.Comment: v6: a mistake in deriving the equation of the cosmological constant corrected, refs adde

    Is dark matter an illusion created by the gravitational polarization of the quantum vacuum?

    Full text link
    Assuming that a particle and its antiparticle have the gravitational charge of the opposite sign, the physical vacuum may be considered as a fluid of virtual gravitational dipoles. Following this hypothesis, we present the first indications that dark matter may not exist and that the phenomena for which it was invoked might be explained by the gravitational polarization of the quantum vacuum by the known baryonic matter.Comment: We have added an Appendix in order to show that the gravitational polarization of the quantum vacuum allows the understanding of the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxie

    A search for ultra-compact dwarf galaxies in the NGC 1023 group of galaxies

    Full text link
    We present a photometric search for UCD candidates in the nearby galaxy group NGC 1023 (d=11 Mpc) -- the poorest environment searched for UCDs yet --, based on wide field imaging with CFHT. After photometric and morphological selection, we obtain a sample of 21 UCD candidates with -12<M_V<-11 mag, if located at NGC 1023's distance. From spectroscopy taken at Calar Alto observatory, we identify the UCD candidate in closest projection to NGC 1023 as an emission line background galaxy. Our photometric data show that in the NGC 1023 group, the mass spectrum of analogs to Fornax/Virgo UCD is restricted to about 1/4 of the maximum Fornax/Virgo UCD mass. More spectroscopy is needed to further constrain the mass range of UCDs in this galaxy group.Comment: 5 pages, 4 figures, to appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    Constraints on Galileon-induced precessions from solar system orbital motions

    Full text link
    We use latest data from solar system planetary orbital motions to put constraints on some Galileon-induced precessional effects. Due to the Vainshtein mechanism, the Galileon-type spherically symmetric field of a monopole induces a small, screened correction proprtional to \sqrt{r} to its usual r^-1 Newtonian potential which causes a secular precession of the pericenter of a test particle. In the case of our solar system, latest data from Mars allow to constrain the magnitude of such an interaction down to \alpha <= 0.3 level. Another Galileon-type effect which might impact solar system dynamics is due to an unscreened constant gradient induced by the peculiar motion of the Galaxy. The magnitude of such an effect, depending on the different gravitational binding energies of the Sun and the planets, is \xi <= 0.004 from the latest bounds on the supplementary perihelion precession of Saturn.Comment: LaTex2e, 11 pages, 1 table, no figures, 35 references. To appear in Journal of Cosmology and Astroparticle Physics (JCAP
    corecore