791 research outputs found

    The Accuracy of Subhalo Detection

    Full text link
    With the ever increasing resolution of N-body simulations, accurate subhalo detection is becoming essential in the study of the formation of structure, the production of merger trees and the seeding of semi-analytic models. To investigate the state of halo finders, we compare two different approaches to detecting subhaloes; the first based on overdensities in a halo and the second being adaptive mesh refinement. A set of stable mock NFW dark matter haloes were produced and a subhalo was placed at different radii within a larger halo. SUBFIND (a Friends-of-Friends based finder) and AHF (an adaptive mesh based finder) were employed to recover the subhalo. As expected, we found that the mass of the subhalo recovered by SUBFIND has a strong dependence on the radial position and that neither halo finder can accurately recover the subhalo when it is very near the centre of the halo. This radial dependence is shown to be related to the subhalo being truncated by the background density of the halo and originates due to the subhalo being defined as an overdensity. If the subhalo size is instead determined using the peak of the circular velocity profile, a much more stable value is recovered. The downside to this is that the maximum circular velocity is a poor measure of stripping and is affected by resolution. For future halo finders to recover all the particles in a subhalo, a search of phase space will need to be introduced.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Warm Dark Haloes Accretion Histories and their Gravitational Signatures

    Full text link
    We study clusters in Warm Dark Matter (WDM) models of a thermally produced dark matter particle 0.50.5 keV in mass. We show that, despite clusters in WDM cosmologies having similar density profiles as their Cold Dark Matter (CDM) counterparts, the internal properties, such as the amount of substructure, shows marked differences. This result is surprising as clusters are at mass scales that are {\em a thousand times greater} than that at which structure formation is suppressed. WDM clusters gain significantly more mass via smooth accretion and contain fewer substructures than their CDM brethren. The higher smooth mass accretion results in subhaloes which are physically more extended and less dense. These fine-scale differences can be probed by strong gravitational lensing. We find, unexpectedly, that WDM clusters have {\em higher} lensing efficiencies than those in CDM cosmologies, contrary to the naive expectation that WDM clusters should be less efficient due to the fewer substructures they contain. Despite being less dense, the larger WDM subhaloes are more likely to have larger lensing cross-sections than CDM ones. Additionally, WDM subhaloes typically reside at larger distances, which radially stretches the critical lines associated with strong gravitational lensing, resulting in excess in the number of clusters with large radial cross-sections at the ∼2σ\sim2\sigma level. Though lensing profile for an individual cluster vary significantly with the line-of-sight, the radial arc distribution based on a sample of ≳100\gtrsim100 clusters may prove to be the crucial test for the presence of WDM.Comment: 13 pages, 14 figures, submitted to MNRA
    • …
    corecore