791 research outputs found
The Accuracy of Subhalo Detection
With the ever increasing resolution of N-body simulations, accurate subhalo
detection is becoming essential in the study of the formation of structure, the
production of merger trees and the seeding of semi-analytic models. To
investigate the state of halo finders, we compare two different approaches to
detecting subhaloes; the first based on overdensities in a halo and the second
being adaptive mesh refinement. A set of stable mock NFW dark matter haloes
were produced and a subhalo was placed at different radii within a larger halo.
SUBFIND (a Friends-of-Friends based finder) and AHF (an adaptive mesh based
finder) were employed to recover the subhalo. As expected, we found that the
mass of the subhalo recovered by SUBFIND has a strong dependence on the radial
position and that neither halo finder can accurately recover the subhalo when
it is very near the centre of the halo. This radial dependence is shown to be
related to the subhalo being truncated by the background density of the halo
and originates due to the subhalo being defined as an overdensity. If the
subhalo size is instead determined using the peak of the circular velocity
profile, a much more stable value is recovered. The downside to this is that
the maximum circular velocity is a poor measure of stripping and is affected by
resolution. For future halo finders to recover all the particles in a subhalo,
a search of phase space will need to be introduced.Comment: 9 pages, 7 figures, accepted for publication in MNRA
Warm Dark Haloes Accretion Histories and their Gravitational Signatures
We study clusters in Warm Dark Matter (WDM) models of a thermally produced
dark matter particle keV in mass. We show that, despite clusters in WDM
cosmologies having similar density profiles as their Cold Dark Matter (CDM)
counterparts, the internal properties, such as the amount of substructure,
shows marked differences. This result is surprising as clusters are at mass
scales that are {\em a thousand times greater} than that at which structure
formation is suppressed. WDM clusters gain significantly more mass via smooth
accretion and contain fewer substructures than their CDM brethren. The higher
smooth mass accretion results in subhaloes which are physically more extended
and less dense. These fine-scale differences can be probed by strong
gravitational lensing. We find, unexpectedly, that WDM clusters have {\em
higher} lensing efficiencies than those in CDM cosmologies, contrary to the
naive expectation that WDM clusters should be less efficient due to the fewer
substructures they contain. Despite being less dense, the larger WDM subhaloes
are more likely to have larger lensing cross-sections than CDM ones.
Additionally, WDM subhaloes typically reside at larger distances, which
radially stretches the critical lines associated with strong gravitational
lensing, resulting in excess in the number of clusters with large radial
cross-sections at the level. Though lensing profile for an
individual cluster vary significantly with the line-of-sight, the radial arc
distribution based on a sample of clusters may prove to be the
crucial test for the presence of WDM.Comment: 13 pages, 14 figures, submitted to MNRA
- …