1,478 research outputs found
Lifetime Improvement in Wireless Sensor Networks via Collaborative Beamforming and Cooperative Transmission
Collaborative beamforming (CB) and cooperative transmission (CT) have
recently emerged as communication techniques that can make effective use of
collaborative/cooperative nodes to create a virtual
multiple-input/multiple-output (MIMO) system. Extending the lifetime of
networks composed of battery-operated nodes is a key issue in the design and
operation of wireless sensor networks. This paper considers the effects on
network lifetime of allowing closely located nodes to use CB/CT to reduce the
load or even to avoid packet-forwarding requests to nodes that have critical
battery life. First, the effectiveness of CB/CT in improving the signal
strength at a faraway destination using energy in nearby nodes is studied.
Then, the performance improvement obtained by this technique is analyzed for a
special 2D disk case. Further, for general networks in which
information-generation rates are fixed, a new routing problem is formulated as
a linear programming problem, while for other general networks, the cost for
routing is dynamically adjusted according to the amount of energy remaining and
the effectiveness of CB/CT. From the analysis and the simulation results, it is
seen that the proposed method can reduce the payloads of energy-depleting nodes
by about 90% in the special case network considered and improve the lifetimes
of general networks by about 10%, compared with existing techniques.Comment: Invited paper to appear in the IEE Proceedings: Microwaves, Antennas
and Propagation, Special Issue on Antenna Systems and Propagation for Future
Wireless Communication
Energy Efficiency in Multi-hop CDMA Networks: A Game Theoretic Analysis
A game-theoretic analysis is used to study the effects of receiver choice on
the energy efficiency of multi-hop networks in which the nodes communicate
using Direct-Sequence Code Division Multiple Access (DS-CDMA). A Nash
equilibrium of the game in which the network nodes can choose their receivers
as well as their transmit powers to maximize the total number of bits they
transmit per unit of energy is derived. The energy efficiencies resulting from
the use of different linear multiuser receivers in this context are compared,
looking at both the non-cooperative game and the Pareto optimal solution. For
analytical ease, particular attention is paid to asymptotically large networks.
Significant gains in energy efficiency are observed when multiuser receivers,
particularly the linear minimum mean-square error (MMSE) receiver, are used
instead of conventional matched filter receivers.Comment: To appear in the Proceedings of the Workshop on Multi-Layer Modelling
and Design of Multi-Hop Wireless Networks (MLMD 06), Minneapolis, MN, July 12
- 15, 200
Capacity Region of Vector Gaussian Interference Channels with Generally Strong Interference
An interference channel is said to have strong interference if for all input
distributions, the receivers can fully decode the interference. This definition
of strong interference applies to discrete memoryless, scalar and vector
Gaussian interference channels. However, there exist vector Gaussian
interference channels that may not satisfy the strong interference condition
but for which the capacity can still be achieved by jointly decoding the signal
and the interference. This kind of interference is called generally strong
interference. Sufficient conditions for a vector Gaussian interference channel
to have generally strong interference are derived. The sum-rate capacity and
the boundary points of the capacity region are also determined.Comment: 50 pages, 11 figures, submitted to IEEE trans. on Information Theor
Energy Harvesting Cooperative Networks: Is the Max-Min Criterion Still Diversity-Optimal?
This paper considers a general energy harvesting cooperative network with M
source-destination (SD) pairs and one relay, where the relay schedules only m
user pairs for transmissions. For the special case of m = 1, the addressed
scheduling problem is equivalent to relay selection for the scenario with one
SD pair and M relays. In conventional cooperative networks, the max-min
selection criterion has been recognized as a diversity-optimal strategy for
relay selection and user scheduling. The main contribution of this paper is to
show that the use of the max-min criterion will result in loss of diversity
gains in energy harvesting cooperative networks. Particularly when only a
single user is scheduled, analytical results are developed to demonstrate that
the diversity gain achieved by the max-min criterion is only (M+1)/2, much less
than the maximal diversity gain M. The max-min criterion suffers this diversity
loss because it does not reflect the fact that the source-relay channels are
more important than the relay-destination channels in energy harvesting
networks. Motivated by this fact, a few user scheduling approaches tailored to
energy harvesting networks are developed and their performance is analyzed.
Simulation results are provided to demonstrate the accuracy of the developed
analytical results and facilitate the performance comparison.Comment: 30 pages, 7 figure
On Energy Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks
In this paper, a hierarchical cross-layer design approach is proposed to
increase energy efficiency in ad hoc networks through joint adaptation of
nodes' transmitting powers and route selection. The design maintains the
advantages of the classic OSI model, while accounting for the cross-coupling
between layers, through information sharing. The proposed joint power control
and routing algorithm is shown to increase significantly the overall energy
efficiency of the network, at the expense of a moderate increase in complexity.
Performance enhancement of the joint design using multiuser detection is also
investigated, and it is shown that the use of multiuser detection can increase
the capacity of the ad hoc network significantly for a given level of energy
consumption.Comment: To appear in the EURASIP Journal on Wireless Communications and
Networking, Special Issue on Wireless Mobile Ad Hoc Network
- …