28 research outputs found
Additional file 1 of Iron deficiency anemia associated factors and early childhood caries in Qingdao
Additional file 1. The questionnaire about Iron deficiency anemia (IDA) influencing factors in Qingdao, China (Version for Children’s Guardians)
Table8_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table3_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table2_Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis.DOCX
Background: Vessel recanalization is the main treatment for ischemic stroke; however, not all patients benefit from it. This lack of treatment benefit is related to the accompanying ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke management in traditional Chinese medicine; its main active ingredient is paeoniflorin (PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances of cerebral I/R injury.Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA 12.0 software were used for meta-analysis.Results: Thirteen studies, including 282 animals overall, were selected. The meta-analyses showed compared to control treatment, PF significantly reduced neurological severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased compared to those in the control groups (p = 0.000).Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury management. However, to evaluate the effects and safety of PF in a more accurate manner, additional preclinical studies are necessary.</p
Table1_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table5_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table1_Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis.XLSX
Background: Vessel recanalization is the main treatment for ischemic stroke; however, not all patients benefit from it. This lack of treatment benefit is related to the accompanying ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke management in traditional Chinese medicine; its main active ingredient is paeoniflorin (PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances of cerebral I/R injury.Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA 12.0 software were used for meta-analysis.Results: Thirteen studies, including 282 animals overall, were selected. The meta-analyses showed compared to control treatment, PF significantly reduced neurological severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased compared to those in the control groups (p = 0.000).Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury management. However, to evaluate the effects and safety of PF in a more accurate manner, additional preclinical studies are necessary.</p
Table6_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table4_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
Table2_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
